Abstract

In this paper, we explore a low-complex bandwidth allocation (BA) scheme with multi-level service guarantees in VLC-OFDM systems. Effective capacity theory, which evaluates wireless channel capacity from a novel view, is utilized to model the system capacity under delay QoS constraints of the link layer. Since intensity modulation of light is used in the system, problems caused by frequency selectivity can be neglected. Then, the BA problem can be formulated as an integer programming problem and it is further relaxed and transformed into a concave one. Lagrangian formulation is used to reformulate the concave problem. Considering the inefficiency of traditional gradient-based schemes and the demand for distributed implementation in local area networks, we localize the global parameters and propose a quasi-distributed quadratic allocation algorithm to provide two-level service guarantees, the first level is QoS oriented, and the second level is QoE oriented. Simulations have shown the efficient performance of the proposed algorithm. The users with more stringent QoS requirements require more subcarriers to guarantee their statistical delay QoS requirements. We also analyze the effect of subcarrier granularity on the aggregate effective capacity via simulations.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system in realistic indoor environment,” J. Lightwave Technol. 33, 3293-3307 (2015).
    [Crossref]
  2. Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
    [Crossref]
  3. J. Dang and Z. Zhang, “Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications,” in Proc. 2012 International Conference on Wireless Communications and Signal Processing (Huangshan, China, Oct. 2012), vol. 7363, pp. 1-6.
  4. Y. S. Cho, Wireless Communications with MATLAB (Wiley Press, Singapore, 2010).
  5. K. Yun, C. Lee, K. I. Ahn, R. Lee, and J. S. Jang, “Optimal signal amplitude of orthogonal frequency-division multiplexing systems in dimmable visible light communications,” J. Opt. Soc. Korea. 18, 459-465 (2014).
    [Crossref]
  6. M. Kashef, M. Abdallah, and K. Qaraqe, “Power allocation for downlink multi-user SC-FDMA visible light communication systems,” in Proc. 49th Annual Conference on Information Sciences and Systems (Baltimore, MD, United states, March. 2015), pp. 1-5.
  7. Q. Lu, X. Ji, and K. Huang, “Clipping distortion analysis and optimal power allocation for ACO-OFDM based visible light communication,” in Proc. 4th IEEE International Conference on Information Science and Technology (Shenzhen, China, Apr. 2014), pp. 320-323.
  8. Y. Wang and N. Chi, “Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system,” Photonic. Netw. Commun. 27, 57-64 (2014).
    [Crossref]
  9. J. Yuan and Q. Wang, “Delay quality-of-service driven resource allocation for relay-based multiuser OFDMA networks,” in Proc. IEEE International Conference on Communications 2012 (Ottawa, ON, Canada, Jun. 2012), pp. 3889-3894.
  10. X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
    [Crossref]
  11. Y. Wang, Y. Wang, and L. Wang, “Providing QoS guarantee for real-time service in wireless OFDM networks with effective capacity Method,” in Proc. 2007 International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China, Sep. 2007), pp. 1988-1991.
  12. A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
    [Crossref]
  13. F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
    [Crossref]
  14. L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).
  15. Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. 2015 IEEE International Conference on Communication Workshop (London, UK, Jun. 2015), pp. 1422-1427.
  16. K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
    [Crossref]
  17. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron, 50, 100-107 (2004).
    [Crossref]
  18. R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
    [Crossref]
  19. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” P. IEEE. 85, 265-298 (1997).
    [Crossref]
  20. D. Wu and R. Negi, “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun. 2, 630-643 (2003).
  21. J. Tang and X. Zhang, “Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks,” IEEE Trans. Wireless Commun. 7, 2318-2328 (2008).
    [Crossref]
  22. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, UK, 2004).
  23. D. P. Palomar and M. A. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas. Commun. 24, 1439-1451 (2006).
    [Crossref]

2016 (1)

L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).

2015 (4)

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

A. T. Hussein and J. M. H. Elmirghani, “Mobile multi-gigabit visible light communication system in realistic indoor environment,” J. Lightwave Technol. 33, 3293-3307 (2015).
[Crossref]

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
[Crossref]

2014 (3)

K. Yun, C. Lee, K. I. Ahn, R. Lee, and J. S. Jang, “Optimal signal amplitude of orthogonal frequency-division multiplexing systems in dimmable visible light communications,” J. Opt. Soc. Korea. 18, 459-465 (2014).
[Crossref]

Y. Wang and N. Chi, “Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system,” Photonic. Netw. Commun. 27, 57-64 (2014).
[Crossref]

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

2012 (1)

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
[Crossref]

2011 (1)

K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
[Crossref]

2008 (1)

J. Tang and X. Zhang, “Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks,” IEEE Trans. Wireless Commun. 7, 2318-2328 (2008).
[Crossref]

2006 (1)

D. P. Palomar and M. A. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas. Commun. 24, 1439-1451 (2006).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron, 50, 100-107 (2004).
[Crossref]

2003 (1)

D. Wu and R. Negi, “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun. 2, 630-643 (2003).

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” P. IEEE. 85, 265-298 (1997).
[Crossref]

Abdallah, M.

M. Kashef, M. Abdallah, and K. Qaraqe, “Power allocation for downlink multi-user SC-FDMA visible light communication systems,” in Proc. 49th Annual Conference on Information Sciences and Systems (Baltimore, MD, United states, March. 2015), pp. 1-5.

Aghvami, A. H.

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

Ahn, K. I.

Aijaz, A.

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

Bao, X.

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

Barry, J. R.

K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” P. IEEE. 85, 265-298 (1997).
[Crossref]

Basnayaka, D. A.

Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. 2015 IEEE International Conference on Communication Workshop (London, UK, Jun. 2015), pp. 1422-1427.

Boyd, S.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, UK, 2004).

Chi, N.

Y. Wang and N. Chi, “Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system,” Photonic. Netw. Commun. 27, 57-64 (2014).
[Crossref]

Chi, X.

L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).

Chiang, M. A.

D. P. Palomar and M. A. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas. Commun. 24, 1439-1451 (2006).
[Crossref]

Cho, Y. S.

Y. S. Cho, Wireless Communications with MATLAB (Wiley Press, Singapore, 2010).

Chu, X.

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

Dai, J.

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

Dang, J.

J. Dang and Z. Zhang, “Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications,” in Proc. 2012 International Conference on Wireless Communications and Signal Processing (Huangshan, China, Oct. 2012), vol. 7363, pp. 1-6.

Elgala, H.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
[Crossref]

Elmirghani, J. M. H.

Haas, H.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
[Crossref]

Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. 2015 IEEE International Conference on Communication Workshop (London, UK, Jun. 2015), pp. 1422-1427.

Hanzo, L.

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
[Crossref]

Huang, K.

Q. Lu, X. Ji, and K. Huang, “Clipping distortion analysis and optimal power allocation for ACO-OFDM based visible light communication,” in Proc. 4th IEEE International Conference on Information Science and Technology (Shenzhen, China, Apr. 2014), pp. 320-323.

Huang, S.

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

Hussein, A. T.

Jang, J. S.

Ji, X.

Q. Lu, X. Ji, and K. Huang, “Clipping distortion analysis and optimal power allocation for ACO-OFDM based visible light communication,” in Proc. 4th IEEE International Conference on Information Science and Technology (Shenzhen, China, Apr. 2014), pp. 320-323.

Jin, F.

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” P. IEEE. 85, 265-298 (1997).
[Crossref]

Kashef, M.

M. Kashef, M. Abdallah, and K. Qaraqe, “Power allocation for downlink multi-user SC-FDMA visible light communication systems,” in Proc. 49th Annual Conference on Information Sciences and Systems (Baltimore, MD, United states, March. 2015), pp. 1-5.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron, 50, 100-107 (2004).
[Crossref]

Lee, C.

Lee, K.

K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
[Crossref]

Lee, R.

Lin, Y.

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

Liu, Y.

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

Lu, Q.

Q. Lu, X. Ji, and K. Huang, “Clipping distortion analysis and optimal power allocation for ACO-OFDM based visible light communication,” in Proc. 4th IEEE International Conference on Information Science and Technology (Shenzhen, China, Apr. 2014), pp. 320-323.

Mesleh, R.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron, 50, 100-107 (2004).
[Crossref]

Nakhai, M. R.

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

Negi, R.

D. Wu and R. Negi, “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun. 2, 630-643 (2003).

Palomar, D. P.

D. P. Palomar and M. A. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas. Commun. 24, 1439-1451 (2006).
[Crossref]

Park, K. H.

K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
[Crossref]

Qaraqe, K.

M. Kashef, M. Abdallah, and K. Qaraqe, “Power allocation for downlink multi-user SC-FDMA visible light communication systems,” in Proc. 49th Annual Conference on Information Sciences and Systems (Baltimore, MD, United states, March. 2015), pp. 1-5.

Shi, W.

L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).

Tang, J.

J. Tang and X. Zhang, “Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks,” IEEE Trans. Wireless Commun. 7, 2318-2328 (2008).
[Crossref]

Tshangini, M.

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

Vandenberghe, L.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, UK, 2004).

Wang, L.

Y. Wang, Y. Wang, and L. Wang, “Providing QoS guarantee for real-time service in wireless OFDM networks with effective capacity Method,” in Proc. 2007 International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China, Sep. 2007), pp. 1988-1991.

Wang, Q.

J. Yuan and Q. Wang, “Delay quality-of-service driven resource allocation for relay-based multiuser OFDMA networks,” in Proc. IEEE International Conference on Communications 2012 (Ottawa, ON, Canada, Jun. 2012), pp. 3889-3894.

Wang, Y.

Y. Wang and N. Chi, “Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system,” Photonic. Netw. Commun. 27, 57-64 (2014).
[Crossref]

Y. Wang, Y. Wang, and L. Wang, “Providing QoS guarantee for real-time service in wireless OFDM networks with effective capacity Method,” in Proc. 2007 International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China, Sep. 2007), pp. 1988-1991.

Y. Wang, Y. Wang, and L. Wang, “Providing QoS guarantee for real-time service in wireless OFDM networks with effective capacity Method,” in Proc. 2007 International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China, Sep. 2007), pp. 1988-1991.

Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. 2015 IEEE International Conference on Communication Workshop (London, UK, Jun. 2015), pp. 1422-1427.

Wang, Z.

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

Wu, D.

D. Wu and R. Negi, “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun. 2, 630-643 (2003).

Yu, G.

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

Yuan, J.

J. Yuan and Q. Wang, “Delay quality-of-service driven resource allocation for relay-based multiuser OFDMA networks,” in Proc. IEEE International Conference on Communications 2012 (Ottawa, ON, Canada, Jun. 2012), pp. 3889-3894.

Yun, K.

Zhang, R.

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
[Crossref]

Zhang, X.

J. Tang and X. Zhang, “Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks,” IEEE Trans. Wireless Commun. 7, 2318-2328 (2008).
[Crossref]

Zhang, Z.

J. Dang and Z. Zhang, “Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications,” in Proc. 2012 International Conference on Wireless Communications and Signal Processing (Huangshan, China, Oct. 2012), vol. 7363, pp. 1-6.

Zhao, L.

L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).

Zhu, X.

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

IEEE Commun. Lett. (2)

L. Zhao, X. Chi, and W. Shi, “A QoS-driven random access algorithm for MPR-capable VLC system,” IEEE Commun. Lett. 20, pp 1239-1242 (2016).

K. Lee K, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15, 217-219 (2011).
[Crossref]

IEEE J. Opt. Commun. Netw. (2)

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” IEEE J. Opt. Commun. Netw. 4, 865-875 (2012).
[Crossref]

Z. Wang, Y. Liu, Y. Lin, and S. Huang, “Full-duplex MAC protocol based on adaptive contention window for visible light communication,” IEEE J. Opt. Commun. Netw. 7, 164-171 (2015).
[Crossref]

IEEE J. Sel. Areas. Commun. (1)

D. P. Palomar and M. A. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE J. Sel. Areas. Commun. 24, 1439-1451 (2006).
[Crossref]

IEEE Trans. Commun. (1)

A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A. H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with M2M/H2H co-Existence under statistical QoS guarantees,” IEEE Trans. Commun. 62, 2353-2365 (2014).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron, 50, 100-107 (2004).
[Crossref]

IEEE Trans. Wireless Commun. (3)

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. 14, 1020-1034 (2015).
[Crossref]

D. Wu and R. Negi, “Effective capacity: a wireless link model for support of quality of service,” IEEE Trans. Wireless Commun. 2, 630-643 (2003).

J. Tang and X. Zhang, “Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks,” IEEE Trans. Wireless Commun. 7, 2318-2328 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Korea (1)

P. IEEE. (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” P. IEEE. 85, 265-298 (1997).
[Crossref]

Photonic. Netw. Commun (1)

Y. Wang and N. Chi, “Asynchronous multiple access using flexible bandwidth allocation scheme in SCM-based 32/64QAM-OFDM VLC system,” Photonic. Netw. Commun. 27, 57-64 (2014).
[Crossref]

Wirel. Netw. (1)

X. Bao, G. Yu, J. Dai, and X. Zhu, “Li-Fi: Light fidelity-a survey,” Wirel. Netw. 21, 1879-1889 (2015).
[Crossref]

Other (8)

Y. Wang, Y. Wang, and L. Wang, “Providing QoS guarantee for real-time service in wireless OFDM networks with effective capacity Method,” in Proc. 2007 International Conference on Wireless Communications, Networking and Mobile Computing (Shanghai, China, Sep. 2007), pp. 1988-1991.

J. Yuan and Q. Wang, “Delay quality-of-service driven resource allocation for relay-based multiuser OFDMA networks,” in Proc. IEEE International Conference on Communications 2012 (Ottawa, ON, Canada, Jun. 2012), pp. 3889-3894.

M. Kashef, M. Abdallah, and K. Qaraqe, “Power allocation for downlink multi-user SC-FDMA visible light communication systems,” in Proc. 49th Annual Conference on Information Sciences and Systems (Baltimore, MD, United states, March. 2015), pp. 1-5.

Q. Lu, X. Ji, and K. Huang, “Clipping distortion analysis and optimal power allocation for ACO-OFDM based visible light communication,” in Proc. 4th IEEE International Conference on Information Science and Technology (Shenzhen, China, Apr. 2014), pp. 320-323.

J. Dang and Z. Zhang, “Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications,” in Proc. 2012 International Conference on Wireless Communications and Signal Processing (Huangshan, China, Oct. 2012), vol. 7363, pp. 1-6.

Y. S. Cho, Wireless Communications with MATLAB (Wiley Press, Singapore, 2010).

Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. 2015 IEEE International Conference on Communication Workshop (London, UK, Jun. 2015), pp. 1422-1427.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, UK, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.