Abstract

In single-photon-emission computed tomography (SPECT) with a pixelated semiconductor detector (PSD), not only pinhole collimators but also parallel-hole collimators are often used in preclinical nuclear-medicine imaging systems. The purpose of this study was to evaluate and compare pinhole and parallel-hole collimators in a PSD. For that purpose, we paired a PID 350 (Ajat Oy Ltd., Finland) CdTe PSD with each of the four collimators most frequently used in preclinical nuclear medicine: (1) a pinhole collimator, and (2) low-energy high-resolution (LEHR), (3) low-energy general-purpose (LEGP), and (4) low-energy high-sensitivity (LEHS) parallel-hole collimators. The sensitivity and spatial resolution of each collimator was evaluated using a point source and a hot-rod phantom. The highest sensitivity was achieved using LEHS, followed by LEGP, LEHR, and pinhole. Also, at a source-to-collimator distance of 2 cm, the spatial resolution was 1.63, 2.05, 2.79, and 3.45 mm using pinhole, LEHR, LEGP, and LEHS, respectively. The reconstructed hot-rod phantom images showed that the pinhole collimator and the LEHR parallel-hole collimator give a fine spatial resolution for preclinical SPECT with PSD. In conclusion, we successfully compared different types of collimators for a preclinical pixelated semiconductor SPECT system.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Ned. 5, 515-531 (1964).
  2. H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006).
    [Crossref]
  3. C. Scheiber and G. C. Giakos, “Medical applications of CdTe and CdZnTe detectors,” Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001).
    [Crossref]
  4. Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
    [Crossref]
  5. Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
    [Crossref]
  6. T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
    [Crossref]
  7. T. E. Peterson and L. R. Furenlid, “SPECT detectors: the Anger camera and beyond,” Phys. Med. Biol. 56, R145-R182 (2011).
  8. S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).
  9. K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).
  10. F. J. Beekman and B. Vastenhouw, “Design and simulation of a high-resolution stationary SPECT system for small animals,” Phys. Med. Biol. 49, 4579-4592 (2004).
    [Crossref]
  11. H. Iida and K. Ogawa, “Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study,” Ann. Nucl. Med. 25, 143-150 (2011).
    [Crossref]
  12. R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
    [Crossref]
  13. K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
    [Crossref]
  14. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
    [Crossref]
  15. A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
    [Crossref]
  16. S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
    [Crossref]
  17. D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
    [Crossref]
  18. D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
    [Crossref]
  19. M. Singh and C. Horne, “Use of a germanium detector to optimize scatter correction in SPECT,” J. Nucl. Med. 28, 1853-1860 (1987).
  20. T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48, 950-959 (2001).
    [Crossref]
  21. J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
    [Crossref]
  22. S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
    [Crossref]
  23. C. Scheiber, “CdTe and CdZnTe detectors in nuclear medicine,” Nucl. Instrum. Meth. Phys. Res. 448, 513-524 (2000).
    [Crossref]
  24. H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
    [Crossref]
  25. Y.-J. Lee and H.-J. Kim, “Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study,” J. Kor. Phys. Soc. 65, 1149-1158 (2014).
    [Crossref]

2014 (1)

Y.-J. Lee and H.-J. Kim, “Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study,” J. Kor. Phys. Soc. 65, 1149-1158 (2014).
[Crossref]

2013 (2)

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

2012 (1)

A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
[Crossref]

2011 (5)

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

H. Iida and K. Ogawa, “Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study,” Ann. Nucl. Med. 25, 143-150 (2011).
[Crossref]

T. E. Peterson and L. R. Furenlid, “SPECT detectors: the Anger camera and beyond,” Phys. Med. Biol. 56, R145-R182 (2011).

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

2009 (1)

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

2006 (1)

H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006).
[Crossref]

2004 (3)

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

F. J. Beekman and B. Vastenhouw, “Design and simulation of a high-resolution stationary SPECT system for small animals,” Phys. Med. Biol. 49, 4579-4592 (2004).
[Crossref]

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

2003 (1)

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

2001 (2)

C. Scheiber and G. C. Giakos, “Medical applications of CdTe and CdZnTe detectors,” Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001).
[Crossref]

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48, 950-959 (2001).
[Crossref]

2000 (1)

C. Scheiber, “CdTe and CdZnTe detectors in nuclear medicine,” Nucl. Instrum. Meth. Phys. Res. 448, 513-524 (2000).
[Crossref]

1998 (1)

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

1996 (1)

J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
[Crossref]

1995 (1)

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

1994 (1)

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

1992 (1)

S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).

1987 (1)

M. Singh and C. Horne, “Use of a germanium detector to optimize scatter correction in SPECT,” J. Nucl. Med. 28, 1853-1860 (1987).

1964 (1)

H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Ned. 5, 515-531 (1964).

Abbene, L.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Anger, H. O.

H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Ned. 5, 515-531 (1964).

Barnden, L.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Becheva, E.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Beekman, F. J.

F. J. Beekman and B. Vastenhouw, “Design and simulation of a high-resolution stationary SPECT system for small animals,” Phys. Med. Biol. 49, 4579-4592 (2004).
[Crossref]

Benoit, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Bollini, D.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Breton, V.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Buvat, I.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Cabal Rodriguez, A. E.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Carlier, T.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Caroli, E.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Cassol, F.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Cristina, K.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Cullum, I.

S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).

Dabrowski, W.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Descourt, P.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Donnarieix, D.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Frisson, T.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Fujita, T.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Furenlid, L. R.

T. E. Peterson and L. R. Furenlid, “SPECT detectors: the Anger camera and beyond,” Phys. Med. Biol. 56, R145-R182 (2011).

Furukawa, Y.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Gambaccini, M.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Garcia, A. D.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Giakos, G. C.

C. Scheiber and G. C. Giakos, “Medical applications of CdTe and CdZnTe detectors,” Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001).
[Crossref]

Giokaris, N.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Giubellino, P.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Goedicke, A.

H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006).
[Crossref]

Goleman, R. E.

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Grevillot, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Grybos, P.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Guigues, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Hiratate, Y.

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

Hirono, T.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Hirose, M.

J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
[Crossref]

Hitomi, K.

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

Horne, C.

M. Singh and C. Horne, “Use of a germanium detector to optimize scatter correction in SPECT,” J. Nucl. Med. 28, 1853-1860 (1987).

Hutton, B.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Ichihara, T.

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

Idzik, M.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Iida, H.

H. Iida and K. Ogawa, “Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study,” Ann. Nucl. Med. 25, 143-150 (2011).
[Crossref]

Ikeda, H.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Ishizu, K.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Jan, S.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Jaszczak, R. J.

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Kajiwara, K.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Kawade, T.

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

Kawase, M.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Kim, D.-H.

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Kim, H.-J.

Y.-J. Lee and H.-J. Kim, “Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study,” J. Kor. Phys. Soc. 65, 1149-1158 (2014).
[Crossref]

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Kim, Y.-S.

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Konik, A.

A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
[Crossref]

Konishi, J.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Kouris, K.

S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).

Kubo, A.

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

Lazaro, D.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Lee, S.-W.

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

Lee, Y.-J.

Y.-J. Lee and H.-J. Kim, “Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study,” J. Kor. Phys. Soc. 65, 1149-1158 (2014).
[Crossref]

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Li, J.

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Loudos, G.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Madsen, M. T.

A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
[Crossref]

Magata, Y.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Maigne, L.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Mancini, A. M.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Martineau, A.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Marzari-Chiesa, A.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Miyazaki, S.

J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
[Crossref]

Montano, L. M.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Moore, S. C.

S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).

Morel, C.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Mukai, T.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Nakamura, K.

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

Nishizawa, S.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Noblet, C.

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Ogawa, K.

H. Iida and K. Ogawa, “Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study,” Ann. Nucl. Med. 25, 143-150 (2011).
[Crossref]

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

Ohata, T.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Onodera, T.

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

Pagani, M.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Park, S.-J.

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Perrot, Y.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Peterson, T. E.

T. E. Peterson and L. R. Furenlid, “SPECT detectors: the Anger camera and beyond,” Phys. Med. Biol. 56, R145-R182 (2011).

Pietrzyk, U.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Prino, F.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Ramello, L.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Rehfeld, N.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Ryu, H.-J.

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

Santin, G.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Sarrut, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Sato, G.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Sato, M.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Schaart, D. R.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Scheiber, C.

C. Scheiber and G. C. Giakos, “Medical applications of CdTe and CdZnTe detectors,” Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001).
[Crossref]

C. Scheiber, “CdTe and CdZnTe detectors in nuclear medicine,” Nucl. Instrum. Meth. Phys. Res. 448, 513-524 (2000).
[Crossref]

Shibasaki, H.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Shoji, T.

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

Singh, M.

M. Singh and C. Horne, “Use of a germanium detector to optimize scatter correction in SPECT,” J. Nucl. Med. 28, 1853-1860 (1987).

Sitta, M.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Sordo, S. D.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Spanoudaki, V.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Staelens, S.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Strul, D.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Stute, S.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

Styliaris, S.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

Sunderland, J. J.

A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
[Crossref]

Swientek, K.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Takahashi, T.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48, 950-959 (2001).
[Crossref]

Tamaki, N.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Tanida, H.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Toyokawa, H.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Ubertini, P.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Uruga, T.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Vastenhouw, B.

F. J. Beekman and B. Vastenhouw, “Design and simulation of a high-resolution stationary SPECT system for small animals,” Phys. Med. Biol. 49, 4579-4592 (2004).
[Crossref]

Visvikis, D.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Wang, H.

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Watanabe, S.

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48, 950-959 (2001).
[Crossref]

Wheadon, R.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Wiacek, P.

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

Wieczorek, H.

H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006).
[Crossref]

Xu, J.

J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
[Crossref]

Yonekura, Y.

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

Zahra, N.

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

Zalutsky, M. R.

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Zappettini, A.

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Ann. Nucl. Med. (1)

H. Iida and K. Ogawa, “Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study,” Ann. Nucl. Med. 25, 143-150 (2011).
[Crossref]

Eur. J. Nucl. Med. (1)

S. C. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138-150 (1992).

IEEE Trans. Nucl. Sci. (1)

T. Takahashi and S. Watanabe, “Recent progress in CdTe and CdZnTe detectors,” IEEE Trans. Nucl. Sci. 48, 950-959 (2001).
[Crossref]

IEEE Trnas. Nucl. Sci. (3)

H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trnas. Nucl. Sci. 53, 1102-1112 (2006).
[Crossref]

K. Ogawa, T. Kawade, K. Nakamura, A. Kubo, and T. Ichihara, “Ultra high resolution pinhole SPECT for small animal study,” IEEE Trnas. Nucl. Sci. 45, 3122-3126 (1998).
[Crossref]

A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trnas. Nucl. Sci. 59, 1887-1891 (2012).
[Crossref]

J. Kor. Phys. Soc. (2)

Y.-J. Lee, S.-J. Park, S.-W. Lee, D.-H. Kim, Y.-S. Kim, and H.-J. Kim, “Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies,” J. Kor. Phys. Soc. 62, 1317-1322 (2013).
[Crossref]

Y.-J. Lee and H.-J. Kim, “Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study,” J. Kor. Phys. Soc. 65, 1149-1158 (2014).
[Crossref]

J. Non-Crys. Solids. (1)

J. Xu, S. Miyazaki, and M. Hirose, “High-quality hydrogenated amorphous silicon-germanium alloys for narrow bandgap thin film solar cells,” J. Non-Crys. Solids 208, 277-281 (1996).
[Crossref]

J. Nucl. Med. (2)

M. Singh and C. Horne, “Use of a germanium detector to optimize scatter correction in SPECT,” J. Nucl. Med. 28, 1853-1860 (1987).

K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, “Ultra-high resolution SPECT system using four pinhole collimators for small animal studies,” J. Nucl. Med. 36, 2282-2287 (1995).

J. Nucl. Ned. (1)

H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Ned. 5, 515-531 (1964).

Nucl. Instrum. Meth. Phys. Res. (6)

D. Bollini, A. E. Cabal Rodriguez, W. Dabrowski, A. D. Garcia, M. Gambaccini, P. Giubellino, P. Grybos, M. Idzik, A. Marzari-Chiesa, L. M. Montano, F. Prino, L. Ramello, M. Sitta, K. Swientek, R. Wheadon, and P. Wiacek, “Energy resolution of a silicon detector with the RX64 ASIC designed for X-ray imaging,” Nucl. Instrum. Meth. Phys. Res. 515, 458-466 (2003).
[Crossref]

C. Scheiber and G. C. Giakos, “Medical applications of CdTe and CdZnTe detectors,” Nucl. Instrum. Meth. Phys. Res. 458, 12-25 (2001).
[Crossref]

Y.-J. Lee, H.-J. Ryu, S.-W. Lee, S.-J. Park, and H.-J. Kim, “Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system,” Nucl. Instrum. Meth. Phys. Res. 713, 33-39 (2013).
[Crossref]

T. Onodera, K. Hitomi, T. Shoji, and Y. Hiratate, “Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging,” Nucl. Instrum. Meth. Phys. Res. 525, 199-204 (2004).
[Crossref]

C. Scheiber, “CdTe and CdZnTe detectors in nuclear medicine,” Nucl. Instrum. Meth. Phys. Res. 448, 513-524 (2000).
[Crossref]

H. Toyokawa, Y. Furukawa, T. Hirono, H. Ikeda, K. Kajiwara, M. Kawase, T. Ohata, G. Sato, M. Sato, T. Takahashi, H. Tanida, T. Uruga, and S. Watanabe, “Si and CdTe pixel detector developments at Spring-8,” Nucl. Instrum. Meth. Phys. Res. 636, S218-S221 (2011).
[Crossref]

Phys. Med. Biol. (6)

T. E. Peterson and L. R. Furenlid, “SPECT detectors: the Anger camera and beyond,” Phys. Med. Biol. 56, R145-R182 (2011).

F. J. Beekman and B. Vastenhouw, “Design and simulation of a high-resolution stationary SPECT system for small animals,” Phys. Med. Biol. 49, 4579-4592 (2004).
[Crossref]

S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, and I. Buvat, “Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images,” Phys. Med. Biol. 56, 6441-6457 (2011).
[Crossref]

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, “Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging,” Phys. Med. Biol. 49, 271-285 (2004).
[Crossref]

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and I. Buvat, “GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy,” Phys. Med. Biol. 56, 881-901 (2011).
[Crossref]

R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Goleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425-437 (1994).
[Crossref]

Sensors (1)

S. D. Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors 9, 3491-3526 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.