Abstract

An optimized multilayer superlens is designed, using a rigorous and efficient approach based on the method of moments (MoM) in conjunction with a simulated annealing (SA) algorithm. For the MoM solution, fast evaluation of closed-form Green’s functions (GFs) in the spatial domain is performed by applying the complex-image (CI) technique, which obviates the time-consuming numerical evaluation of Sommerfeld integrals. The imaging capability of the superlens is examined with the correlation coefficient; results show that using circular polarization for the incident wave can improve this coefficient. To validate the proposed method, finite-element-based simulations are exploited, which reveal the method’s accuracy and computational efficiency. Simulation results indicate that the designed structure is capable of producing two-dimensional sub-diffraction-limited images in the visible range, which may make it more versatile for practical applications. Finally, as a considerable finding, it is demonstrated for the proposed design that using circularly polarized illumination provides improved super-resolving performance, compared to linearly polarized illumination.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435-441 (2008).
    [Crossref]
  2. Z. Shi, V. Kochergin, and F. Wang, “193 nm superlens imaging structure for 20nm lithography node”, Opt. Express 17, 11309-11314 (2009).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [Crossref]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
    [Crossref]
  5. D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470-3474 (2004).
    [Crossref]
  6. C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film superlens towards lab-on-a-chip integration,” Opt. Express 17, 22543-22552 (2009).
    [Crossref]
  7. R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
    [Crossref]
  8. J. Ma and K. Yuan. “Optimum structure of multi-layer silver superlenses for optical lithography,” In Proc. 2nd International Conference on Computer Science and Electronics Engineering (Hangzhou, China, Mar. 2013), pp.1318-1321.
  9. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
    [Crossref]
  10. D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197-202 (2007).
    [Crossref]
  11. X. Yang, B. Zeng, C. Wang, and X. Luo, “Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer,” Opt. Express 17, 21560-21565 (2009).
    [Crossref]
  12. L. H. Yeh and J. F. Kiang, “Multilayered superlenses containing CsBr or active medium for subwavelength photolithography,” PIER B 59, 1-18 (2014).
    [Crossref]
  13. B. Zeng, X. Yang, C. Wang, and X. Luo, “Plasmonic interference nanolithography with a double-layer planar silver lens structure,” Opt. Express 17, 16783-16791 (2009).
    [Crossref]
  14. Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).
  15. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwave-length imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16, 4217-4227 (2008).
    [Crossref]
  16. B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
    [Crossref]
  17. G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.
  18. J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
    [Crossref]
  19. F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
    [Crossref]
  20. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
    [Crossref]
  21. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604-3606 (2000).
  22. A. Sommerfeld, Partial differential equations in physics, (Academic Press, New York, USA, 1949).
  23. K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990).
    [Crossref]
  24. C. A. Balanis, Advanced Engineering Electromagnetic, (New York, USA, John Wiley & Sons, 1989)
  25. K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45, 508-519 (1997).
    [Crossref]
  26. Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
    [Crossref]
  27. M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microw. Theory Techn. 40, 2055-2062 (1992).
    [Crossref]
  28. N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
    [Crossref]
  29. M. Ahmadi, K. Forooraghi, and R. Faraji-Dana, “Analysis and design of an object-independent superlens,” Plasmonics (In-Press).
  30. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
    [Crossref]
  31. P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).
  32. M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
    [Crossref]
  33. R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
  34. V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).
  35. J. Orton and T. Foxon, Molecular beam epitaxy: a short history, (Oxford University Press, Oxford, UK, 2015).

2014 (1)

L. H. Yeh and J. F. Kiang, “Multilayered superlenses containing CsBr or active medium for subwavelength photolithography,” PIER B 59, 1-18 (2014).
[Crossref]

2013 (1)

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

2012 (3)

P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).

M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
[Crossref]

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

2010 (1)

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

2009 (4)

2008 (3)

C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwave-length imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16, 4217-4227 (2008).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435-441 (2008).
[Crossref]

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

2007 (2)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197-202 (2007).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

2006 (1)

B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
[Crossref]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).

2004 (1)

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470-3474 (2004).
[Crossref]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[Crossref]

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604-3606 (2000).

1999 (1)

F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
[Crossref]

1998 (2)

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

1997 (1)

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45, 508-519 (1997).
[Crossref]

1992 (2)

M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microw. Theory Techn. 40, 2055-2062 (1992).
[Crossref]

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

1990 (1)

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990).
[Crossref]

1987 (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

Ahmadi, M.

M. Ahmadi, K. Forooraghi, and R. Faraji-Dana, “Analysis and design of an object-independent superlens,” Plasmonics (In-Press).

Aksun, M. I.

M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microw. Theory Techn. 40, 2055-2062 (1992).
[Crossref]

Arnold, M. D.

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

Ashrat, M.

M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetic, (New York, USA, John Wiley & Sons, 1989)

Blaikie, R. J.

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197-202 (2007).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470-3474 (2004).
[Crossref]

Boltasseva, A.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film superlens towards lab-on-a-chip integration,” Opt. Express 17, 22543-22552 (2009).
[Crossref]

Bones, P. J.

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

Chen, W.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

Chow, Y. L.

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

Corana, A.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

de Arquer, F. P. G.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Du, C.

Fang, D. G.

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

Faraji-Dana, R.

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

M. Ahmadi, K. Forooraghi, and R. Faraji-Dana, “Analysis and design of an object-independent superlens,” Plasmonics (In-Press).

Forooraghi, K.

M. Ahmadi, K. Forooraghi, and R. Faraji-Dana, “Analysis and design of an object-independent superlens,” Plasmonics (In-Press).

Foxon, T.

J. Orton and T. Foxon, Molecular beam epitaxy: a short history, (Oxford University Press, Oxford, UK, 2015).

Gan, D.

Hashmi, L.

P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).

Hojjat, N.

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

Howard, G. E.

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

Hvam, J. M.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

Jeppesen, C.

Jiao, D.

F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
[Crossref]

Jin, J. M.

F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
[Crossref]

Kiang, J. F.

L. H. Yeh and J. F. Kiang, “Multilayered superlenses containing CsBr or active medium for subwavelength photolithography,” PIER B 59, 1-18 (2014).
[Crossref]

Kildishev, A. V.

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

Kochergin, V.

Kristensen, A.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film superlens towards lab-on-a-chip integration,” Opt. Express 17, 22543-22552 (2009).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

Leskelä, M.

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

Li, E.

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

Ling, F.

F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
[Crossref]

Liu, Z.

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435-441 (2008).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

Luo, X.

Ma, J.

J. Ma and K. Yuan. “Optimum structure of multi-layer silver superlenses for optical lithography,” In Proc. 2nd International Conference on Computer Science and Electronics Engineering (Hangzhou, China, Mar. 2013), pp.1318-1321.

Malik, M. M.

P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).

Marchesi, M.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

Martini, C.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

Mehmood, M.

M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
[Crossref]

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197-202 (2007).
[Crossref]

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470-3474 (2004).
[Crossref]

Michalski, K. A.

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45, 508-519 (1997).
[Crossref]

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990).
[Crossref]

Miikkulainen, V.

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

Mittra, R.

M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microw. Theory Techn. 40, 2055-2062 (1992).
[Crossref]

Moore, C. P.

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

Mortensen, N. A.

Moshchalkov, V. V.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Mosig, J. R.

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45, 508-519 (1997).
[Crossref]

Nielsen, R. B.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film superlens towards lab-on-a-chip integration,” Opt. Express 17, 22543-22552 (2009).
[Crossref]

Orton, J.

J. Orton and T. Foxon, Molecular beam epitaxy: a short history, (Oxford University Press, Oxford, UK, 2015).

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[Crossref]

Psaltis, D.

Puurunen, R. L.

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).

Qayyum, A.

M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
[Crossref]

Ridella, S.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

Ritala, M.

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

Safavi-Naeini, S.

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

Sana, P.

P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).

Shalaev, V. M.

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

Shi, Z.

Sommerfeld, A.

A. Sommerfeld, Partial differential equations in physics, (Academic Press, New York, USA, 1949).

Song, W.

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

Thoreson, M. D.

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Vandenbosch, G. A. E.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Verellen, N.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Volski, V.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Wang, C.

Wang, F.

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Xiao, S.

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

Yang, J. J.

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

Yang, X.

Yeh, L. H.

L. H. Yeh and J. F. Kiang, “Multilayered superlenses containing CsBr or active medium for subwavelength photolithography,” PIER B 59, 1-18 (2014).
[Crossref]

Yuan, K.

J. Ma and K. Yuan. “Optimum structure of multi-layer silver superlenses for optical lithography,” In Proc. 2nd International Conference on Computer Science and Electronics Engineering (Hangzhou, China, Mar. 2013), pp.1318-1321.

Zeng, B.

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435-441 (2008).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

Zhao, Y.

Zheng, D.

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990).
[Crossref]

ACM T. Math. Software (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the ’simulated annealing’ algorithm,” ACM T. Math. Software 13, 262-280, (1987).
[Crossref]

Appl. Phys. B (1)

R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100, 93-100 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Z. Liu, E. Li, V. M. Shalaev, and A. V. Kildishev, “Near field enhancement in silver nanoantenna-superlens systems,” Appl. Phys. Lett. 101, 021109-1-021109-3 (2012).

IEE Proc.-Mircow. Antennas Propag. (1)

N. Hojjat, S. Safavi-Naeini, R. Faraji-Dana, and Y. L. Chow, “Fast computation of the nonsymmetrical components of the Green’s function for multilayer media using complex images,” IEE Proc.-Mircow. Antennas Propag. 145, 285-288 (1998).
[Crossref]

IEE Proc..-Mircow. Antennas Propag. (1)

Y. L. Chow, N. Hojjat, S. Safavi-Naeini, and R. Faraji-Dana, “Spectral Green’s functions for multilayer media in a convenient computational form,” IEE Proc..-Mircow. Antennas Propag. 145, 85-91 (1998)
[Crossref]

IEEE Trans. Antennas Propag. (2)

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I: theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990).
[Crossref]

K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag. 45, 508-519 (1997).
[Crossref]

IEEE Trans. Microw. Theory Techn. (2)

J. J. Yang, Y. L. Chow, G. E. Howard, and D. G. Fang, “Complex images of an electric dipole in homogenous and layered dielectrics between two ground planes,” IEEE Trans. Microw. Theory Techn. 40, 595-600 (1992).
[Crossref]

M. I. Aksun and R. Mittra, “Derivation of closed-form Green’s functions for a general microstrip geometry,” IEEE Trans. Microw. Theory Techn. 40, 2055-2062 (1992).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

F. Ling, D. Jiao, and J. M. Jin, “Efficient electromagnetic modeling of microstrip structures in multilayer media,” IEEE Trans. Microwave Theory Tech. 47, 1810-1818 (1999).
[Crossref]

ISRN Optics. (1)

P. Sana, L. Hashmi, and M. M. Malik, “Luminescence and morphological kinetics of functionalized ZnS colloidal nanocrystals,” ISRN Optics. 2012, Article ID 621908, (2012).

J. Appl. Phys. (2)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).

V. Miikkulainen, M. Leskelä M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends,” J. Appl. Phys. 113, 021301 (2013).

J. Opt. Soc. Am. A. (1)

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses,”J. Opt. Soc. Am. A. 25, 911-918 (2008).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. O. S. Melville and R. J. Blaikie, “Near-field optical lithography using a planar silver lens,” J. Vac. Sci. Technol. B 22, 3470-3474 (2004).
[Crossref]

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360-3365 (2007).
[Crossref]

Nature Materials (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Materials 7, 435-441 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

B. Wood, J. B. Pendry, and D. P. Tsai. “Directed subwave-length imaging using a layered metal-dielectric system.” Phys. Rev. B 74, 115116 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[Crossref]

Physica B (1)

D. O. S. Melville and R. J. Blaikie, “Analysis and optimization of multilayer silver superlenses for near-field optical lithography,” Physica B 394, 197-202 (2007).
[Crossref]

PIER B (1)

L. H. Yeh and J. F. Kiang, “Multilayered superlenses containing CsBr or active medium for subwavelength photolithography,” PIER B 59, 1-18 (2014).
[Crossref]

Plasmonics (1)

M. Ahmadi, K. Forooraghi, and R. Faraji-Dana, “Analysis and design of an object-independent superlens,” Plasmonics (In-Press).

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005).
[Crossref]

Semiconductors. (1)

M. Ashrat, M. Mehmood, and A. Qayyum, “Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation,” Semiconductors. 46, 1326-1330 (2012).
[Crossref]

Other (5)

J. Orton and T. Foxon, Molecular beam epitaxy: a short history, (Oxford University Press, Oxford, UK, 2015).

A. Sommerfeld, Partial differential equations in physics, (Academic Press, New York, USA, 1949).

C. A. Balanis, Advanced Engineering Electromagnetic, (New York, USA, John Wiley & Sons, 1989)

J. Ma and K. Yuan. “Optimum structure of multi-layer silver superlenses for optical lithography,” In Proc. 2nd International Conference on Computer Science and Electronics Engineering (Hangzhou, China, Mar. 2013), pp.1318-1321.

G. A. E. Vandenbosch, V. Volski, F. P. G. de Arquer, N. Verellen, and V. V. Moshchalkov, “On the use of the Method of Moments in plasmonic applications” in Proc. 2010 URSI Int’l Symposium on EMTS (Berlin, Germany, Aug. 2010), pp. 257-260.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.