Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 20,
  • Issue 1,
  • pp. 94-100
  • (2016)

A Coaxial and Off-axial Integrated Three-mirror Optical System with High Resolution and Large Field of View

Open Access Open Access

Abstract

A novel optical design for high resolution, large field of view (FOV) and multispectral remote sensing is presented. An f/7.3 Korsch and two f/17.9 Cook three-mirror optical systems are integrated by sharing the primary and secondary mirrors, bias of the FOV, decentering of the apertures and reasonable structure arrangement. The aperture stop of the Korsch system is located on the primary mirror, while those of the Cook systems are on the exit pupils. High resolution image with spectral coverage from visible to near-infrared (NIR) can be acquired through the Korsch system with a focal length of 14 m, while wide-field imaging is accomplished by the two Cook systems whose focal lengths are both 13.24 m. The full FOV is 4°×0.13°, a coverage width of 34.9 km at the altitude of 500 km can then be acquired by push-broom imaging. To facilitate controlling the stray light, the intermediate images and the real exit pupils are spatially available. After optimization, a near diffraction-limited performance and a compact optical package are achieved. The sharing of the on-axis primary and secondary mirrors reduces the cost of fabrication, test, and manufacture effectively. Besides, the two tertiary mirrors of the Cook systems possess the same parameters, further cutting down the cost.

© 2016 Optical Society of Korea

PDF Article
More Like This
Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror

Qingyu Meng, Hongyuan Wang, Kejun Wang, Yan Wang, Zhenhua Ji, and Dong Wang
Appl. Opt. 55(32) 8962-8970 (2016)

Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view

Qingyu Meng, Hongyuan Wang, Wenjing Liang, Zhiqiang Yan, and Bingwen Wang
Appl. Opt. 58(3) 609-615 (2019)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.