Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 19,
  • Issue 5,
  • pp. 437-443
  • (2015)

Performance of All-Optical Multihop RoFSO Communication System over Gamma-Gamma Atmospheric Turbulence Channels

Open Access Open Access

Abstract

In this paper, we analyze the performance of the all-optical multihop radio over a free space optical (RoFSO) communication system with amplify-and-forward (AF) relays under varying weather conditions. The proposed channel model considers the propagation loss, attenuation and atmospheric fading modeled by the Gamma-Gamma (GG) distribution. Both the amplified spontaneous emission (ASE) noise in the all-optical relays and the background noise projected onto receiver apertures have been considered in the analysis. The lower bound analytical expressions for the end-to-end bit error rate (BER) and outage probability are derived for the multihop system employing the all-optical relays with the full channel state information (CSI). Meanwhile, the exact results for BER and outage probability are obtained via Monte Carlo simulation. Results indicate the performance of the proposed system will be improved by the multihop transmission technology. For a fixed number of relays, the BER and outage probability will be increased with the deterioration of the weather conditions.

© 2015 Optical Society of Korea

PDF Article
More Like This
Serial Free-Space Optical Relaying Communications Over Gamma-Gamma Atmospheric Turbulence Channels

Christos K. Datsikas, Kostas P. Peppas, Nikos C. Sagias, and George S. Tombras
J. Opt. Commun. Netw. 2(8) 576-586 (2010)

Capacity Analysis of Dual Amplify-and-Forward Relayed Free-Space Optical Communication Systems Over Turbulence Channels With Pointing Errors

Kostas P. Peppas, Argyris N. Stassinakis, Hector E. Nistazakis, and George S. Tombras
J. Opt. Commun. Netw. 5(9) 1032-1042 (2013)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.