Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 19,
  • Issue 4,
  • pp. 363-370
  • (2015)

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

Open Access Open Access

Abstract

The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

© 2015 Optical Society of Korea

PDF Article
More Like This
Waveform model of a laser altimeter for an elliptical Gaussian beam

Ma Yue, Wang Mingwei, Li Guoyuan, Lu Xiushan, and Yang Fanlin
Appl. Opt. 55(8) 1957-1965 (2016)

Waveform width of a satellite laser altimeter illuminating on the sea surface

Yue Ma, Song Li, Wenhao Zhang, Zhiyu Zhang, Hui Zhou, and Ma Xin
Appl. Opt. 56(22) 6130-6137 (2017)

Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland

Song Li, Wenhao Zhang, Yue Ma, Xiao Hua Wang, Fanlin Yang, and Dianpeng Su
Appl. Opt. 57(10) 2482-2489 (2018)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.