Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 18,
  • Issue 4,
  • pp. 388-394
  • (2014)

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

Open Access Open Access

Abstract

In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

© 2014 Optical Society of Korea

PDF Article
More Like This
Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object

Seung-Cheol Kim, Seok-Chan Park, and Eun-Soo Kim
Appl. Opt. 48(34) H95-H104 (2009)

Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging

Dong-Hak Shin, Byung-Gook Lee, and Joon-Jae Lee
Opt. Express 16(21) 16294-16304 (2008)

Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging

Dong-Hak Shin, Chun-Wei Tan, Byung-Gook Lee, Joon-Jae Lee, and Eun-Soo Kim
Appl. Opt. 47(35) 6656-6665 (2008)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved