Abstract

A novel multi-oxide layer structure for vertical cavity surface emitting laser (VCSEL) structures is proposed to achieve higher single mode output power. The structure has four oxide layers with different aperture sizes and thicknesses. The oxide layer thicknesses are optimized simultaneously to reach the highest single mode output power. A heuristic method is proposed for plotting the influence of these variable changes on the operation of optical output power. A comprehensive optical-electrical thermal-gain self-consistent VCSEL model is used to simulate the continuous-wave operation of the multi-layer oxide VCSELs. A comparison between optimized VCSELs with different structures is presented. The results show that by using multi-oxide layers with different thicknesses, higher single-mode optical output power could be achieved in comparison with multi-oxide layer structures with the same thicknesses.

© 2014 Optical Society of Korea

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.