In this study a new design concept of the Fabry-Perot filter, constructed with an anisotropic space layer and a couple of isotropic mirrors, was proposed based on the Maxwell equations and the characteristic matrix method. The single- and double-cavity Fabry-Perot filters were designed, and their optical properties were investigated with a developed software package. In addition, the dependence of the transmittance and phase shift for two orthogonal polarization states on the column angle of the anisotropic space layer and the incidence angle were discussed. We demonstrated that the polarization state of electromagnetic waves and phase shifts can be modulated by exploiting an anisotropic space layer in a polarization F-P filter. Birefringence of the anisotropic space layer provided a sophisticated phase modulation with varied incidence angles over a broad range, resulting in a wide-angle phase shift. This new concept would be useful for designing optical components with isotropic and anisotropic materials.

© 2013 Optical Society of Korea

PDF Article

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.