Abstract

We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef]
  3. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  4. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Comm. 244, 455-459 (2005).
    [CrossRef]
  5. D. Kim, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005).
    [CrossRef]
  6. K.-M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010).
    [CrossRef]
  7. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightwave Technol. 24, 4391-4401 (2006).
    [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
    [CrossRef]
  9. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
    [CrossRef]
  10. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
    [CrossRef]
  11. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  12. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
    [CrossRef]
  13. G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007).
    [CrossRef]
  14. N.-N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 <TEX>${\mu}m$</TEX>," IEEE J. Quantum Electron. 43, 479-485 (2007).
    [CrossRef]
  15. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
    [CrossRef]
  16. J. Jung, "Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

2010 (2)

K.-M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010).
[CrossRef]

J. Jung, "Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010).
[CrossRef]

2007 (3)

G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 <TEX>${\mu}m$</TEX>," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007).
[CrossRef]

2006 (3)

2005 (5)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Comm. 244, 455-459 (2005).
[CrossRef]

D. Kim, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005).
[CrossRef]

G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

2004 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

1997 (1)

1988 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).

1985 (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

N.-N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 <TEX>${\mu}m$</TEX>," IEEE J. Quantum Electron. 43, 479-485 (2007).
[CrossRef]

J. Lightwave Technol. (3)

Journal of the Optical Society of Korea (2)

K.-M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010).
[CrossRef]

J. Jung, "Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010).
[CrossRef]

Nano Lett. (1)

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef]

Opt. Comm. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Comm. 244, 455-459 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.