Abstract
© 2011 Optical Society of Korea
PDF Article© 2011 Optical Society of Korea
PDF Article
T. Klein, W. Wieser, C. M. Eigenwillig, B. R.
Biedermann, and R. Huber, "Megahertz OCT for ultrawide-field retinal
imaging with a 1050nm Fourier domain mode-locked laser," Opt. Express
19, 3044-3062 (2011).
[Crossref]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E.
Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed
1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging
at 100,000 to 400,000 axial scans per second," Opt. Express 18,
20029-20048 (2010).
[Crossref]
W. Wieser, B. R. Biedermann, T. Klein, C. M.
Eigenwillig, and R. Huber, "Multi-megahertz OCT: high quality 3D
imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express
18, 14685-14704 (2010).
[Crossref]
J. U. Kang, J.-H. Han, X. Liu, and K. Zhang,
"Commonpath optical coherence tomography for biomedical imaging and
sensing," J. Opt. Soc. Korea 14, 1-13 (2010).
[Crossref]
W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J.
Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept
laser and application to high-speed optical frequency domain imaging,"
Opt. Lett. 35, 2919-2921 (2010).
[Crossref]
M. Kuznetsov, W. Atia, B. Johnson, and D.
Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for
OCT imaging applications," Proc. SPIE 7554, 75541F
(2010).
K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa,
and C. Chong, "MEMS scanner based swept source laser for optical
coherence tomography," Proc. SPIE 7554, 75542Q (2010).
S.-W. Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W.
Jung, and Z. Chen, "Optimization for axial resolution, depth range, and
sensitivity of spectral domain optical coherence tomography at 1.3
<TEX>${\mu}m$</TEX>," J. Korean Phys. Soc. 55, 2354-2360
(2009).
[Crossref]
V. J. Srinivasan, D. C. Adler, Y. Chen, I.
Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto,
"Ultrahigh-speed optical coherence tomography for threedimensional and
en face imaging of the retina and optic nerve head," Invest.
Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[Crossref]
M. Jeon, J. Zhang, and Z. Chen,
"Characterization of Fourier domain mode-locked wavelength swept laser
for optical coherence tomography imaging," Opt. Express 16, 3727-3737
(2008).
[Crossref]
M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen,
"High-speed and wide bandwidth Fourier domain mode-locked wavelength
swept laser with multiple SOAs," Opt. Express 16, 2547-2554
(2008).
[Crossref]
V. J. Srinivasan, R. Huber, I. Gorczynska, J. G.
Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed,
highresolution optical coherence tomography and retinal imaging with a
frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363
(2007).
[Crossref]
S.-W. Lee, C.-S. Kim, and B.-M. Kim,
"External line-cavity wavelength-swept source at 850 nm for optical
coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178
(2007).
[Crossref]
H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R.
Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly
swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944
(2006).
[Crossref]
H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen,
T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in
vivo with swept-source optical coherence tomography," Opt. Express 14,
12902-12908 (2006).
[Crossref]
A. Bilenca, S. H. Yun, G. J. Tearney, and B. E.
Bouma, "Numerical study of wavelength-swept semiconductor ring lasers:
the role of refractive-index nonlinearities in semiconductor optical
amplifiers and implications for biomedical imaging applications," Opt.
Lett. 31, 760-762 (2006).
[Crossref]
R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto,
and K. Hsu, "Amplified, frequency swept lasers for frequency domain
reflectometry and OCT imaging: design and scaling principles," Opt.
Express 13, 3513-3528 (2005).
[Crossref]
Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba,
A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai,
"Three-dimensional and high-speed swept-source optical coherence
tomography for in vivo investigation of human anterior eye segments,"
Opt. Express 13, 10652-10664 (2005).
[Crossref]
M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto,
A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier
domain optical coherence tomography and methods for dispersion
compensation," Opt. Express 12, 2404-2422 (2004).
[Crossref]
C. Xu, J. Ye, D. L. Marks, and S. A. Boppart,
"Nearinfrared dyes as contrast-enhancing agents for spectroscopic
optical coherence tomography," Opt. Lett. 29, 1647-1649
(2004).
[Crossref]
S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de
Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor
wavelength-swept laser for biomedical imaging," IEEE Photon. Technol.
Lett. 16, 293-295 (2004).
[Crossref]
D. J. Faber, E. G. Mik, M. C. G. Aalders, and T.
G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by
spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438
(2003).
[Crossref]
B. Považay, K. Bizheva, B. Hermann, A.
Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M.
Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. St. J. Russell,
"Enhanced visualization of choroidal vessels using ultrahigh resolution
ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986
(2003).
[Crossref]
R. Leitgeb, C. Hitzenberger, and A. Fercher,
"Performance of fourier domain vs. time domain optical coherence
tomography," Opt. Express 11, 889-894 (2003).
[Crossref]
M. Choma, M. Sarunic, C. Yang, and J. Izatt,
"Sensitivity advantage of swept source and Fourier domain optical
coherence tomography," Opt. Express 11, 2183-2189
(2003).
[Crossref]
S. Yun, G. Tearney, B. Bouma, B. Park, and J. de
Boer, "High-speed spectral-domain optical coherence tomography at 1.3
μm wavelength," Opt. Express 11, 3598-3604 (2003).
[Crossref]
B. White, M. Pierce, N. Nassif, B. Cense, B.
Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic
human retinal blood flow imaging using ultra-highspeed spectral domain
optical Doppler tomography," Opt. Express 11, 3490-3497
(2003).
[Crossref]
U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li,
C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical
coherence tomography," Opt. Lett. 25, 111-113 (2000).
[Crossref]
A. N. S. Institute, "American national
standard for safe use of lasers," in ANSI Z 136-1
(2000).
R. S. Chinn, E. A. Swanson, and J. G. Fujimoto,
"Optical coherence tomography using a frequency-tunable optical
source," Opt. Lett. 22, 340-342 (1997).
[Crossref]
C. A. Puliafito, M. R. Hee, C. P. Lin, E.
Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G.
Fujimoto, "Imaging of macular diseases with optical coherence
tomography," Ophthalmology 102, 217-229 (1995).
J. S. Schuman, M. R. Hee, A. V. Arya, T.
Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson,
"Optical coherence tomography: a new tool for glaucoma diagnosis,"
Curr. Opin. Ophthalmol. 6, 89-95 (1995).
J. S. Schuman, M. R. Hee, C. A. Puliafito, C.
Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A.
Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer
thickness in normal and glaucomatous eyes using optical coherence
tomography," Arch. Ophthalmol. 113, 586-596 (1995).
J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin,
D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto,
"Micrometer-scale resolution imaging of the anterior eye in vivo with
optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589
(1994).
W. V. Sorin and D. M. Baney, "A simple
intensity noise reduction technique for optical low-coherence
reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406
(1992).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S.
Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, and J. G. Fujimoto, "Optical coherence tomography,"
Science 254, 1178-1181 (1991).
[Crossref]
J. S. Schuman, M. R. Hee, C. A. Puliafito, C.
Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A.
Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer
thickness in normal and glaucomatous eyes using optical coherence
tomography," Arch. Ophthalmol. 113, 586-596 (1995).
J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin,
D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto,
"Micrometer-scale resolution imaging of the anterior eye in vivo with
optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589
(1994).
J. S. Schuman, M. R. Hee, A. V. Arya, T.
Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson,
"Optical coherence tomography: a new tool for glaucoma diagnosis,"
Curr. Opin. Ophthalmol. 6, 89-95 (1995).
W. V. Sorin and D. M. Baney, "A simple
intensity noise reduction technique for optical low-coherence
reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406
(1992).
[Crossref]
S.-W. Lee, C.-S. Kim, and B.-M. Kim,
"External line-cavity wavelength-swept source at 850 nm for optical
coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178
(2007).
[Crossref]
S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de
Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor
wavelength-swept laser for biomedical imaging," IEEE Photon. Technol.
Lett. 16, 293-295 (2004).
[Crossref]
V. J. Srinivasan, D. C. Adler, Y. Chen, I.
Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto,
"Ultrahigh-speed optical coherence tomography for threedimensional and
en face imaging of the retina and optic nerve head," Invest.
Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[Crossref]
J. U. Kang, J.-H. Han, X. Liu, and K. Zhang,
"Commonpath optical coherence tomography for biomedical imaging and
sensing," J. Opt. Soc. Korea 14, 1-13 (2010).
[Crossref]
S.-W. Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W.
Jung, and Z. Chen, "Optimization for axial resolution, depth range, and
sensitivity of spectral domain optical coherence tomography at 1.3
<TEX>${\mu}m$</TEX>," J. Korean Phys. Soc. 55, 2354-2360
(2009).
[Crossref]
C. A. Puliafito, M. R. Hee, C. P. Lin, E.
Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G.
Fujimoto, "Imaging of macular diseases with optical coherence
tomography," Ophthalmology 102, 217-229 (1995).
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E.
Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed
1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging
at 100,000 to 400,000 axial scans per second," Opt. Express 18,
20029-20048 (2010).
[Crossref]
W. Wieser, B. R. Biedermann, T. Klein, C. M.
Eigenwillig, and R. Huber, "Multi-megahertz OCT: high quality 3D
imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express
18, 14685-14704 (2010).
[Crossref]
T. Klein, W. Wieser, C. M. Eigenwillig, B. R.
Biedermann, and R. Huber, "Megahertz OCT for ultrawide-field retinal
imaging with a 1050nm Fourier domain mode-locked laser," Opt. Express
19, 3044-3062 (2011).
[Crossref]
B. Považay, K. Bizheva, B. Hermann, A.
Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M.
Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. St. J. Russell,
"Enhanced visualization of choroidal vessels using ultrahigh resolution
ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986
(2003).
[Crossref]
R. Leitgeb, C. Hitzenberger, and A. Fercher,
"Performance of fourier domain vs. time domain optical coherence
tomography," Opt. Express 11, 889-894 (2003).
[Crossref]
M. Choma, M. Sarunic, C. Yang, and J. Izatt,
"Sensitivity advantage of swept source and Fourier domain optical
coherence tomography," Opt. Express 11, 2183-2189
(2003).
[Crossref]
S. Yun, G. Tearney, B. Bouma, B. Park, and J. de
Boer, "High-speed spectral-domain optical coherence tomography at 1.3
μm wavelength," Opt. Express 11, 3598-3604 (2003).
[Crossref]
B. White, M. Pierce, N. Nassif, B. Cense, B.
Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic
human retinal blood flow imaging using ultra-highspeed spectral domain
optical Doppler tomography," Opt. Express 11, 3490-3497
(2003).
[Crossref]
Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba,
A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai,
"Three-dimensional and high-speed swept-source optical coherence
tomography for in vivo investigation of human anterior eye segments,"
Opt. Express 13, 10652-10664 (2005).
[Crossref]
M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto,
A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier
domain optical coherence tomography and methods for dispersion
compensation," Opt. Express 12, 2404-2422 (2004).
[Crossref]
R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto,
and K. Hsu, "Amplified, frequency swept lasers for frequency domain
reflectometry and OCT imaging: design and scaling principles," Opt.
Express 13, 3513-3528 (2005).
[Crossref]
H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R.
Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly
swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944
(2006).
[Crossref]
H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen,
T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in
vivo with swept-source optical coherence tomography," Opt. Express 14,
12902-12908 (2006).
[Crossref]
M. Jeon, J. Zhang, and Z. Chen,
"Characterization of Fourier domain mode-locked wavelength swept laser
for optical coherence tomography imaging," Opt. Express 16, 3727-3737
(2008).
[Crossref]
M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen,
"High-speed and wide bandwidth Fourier domain mode-locked wavelength
swept laser with multiple SOAs," Opt. Express 16, 2547-2554
(2008).
[Crossref]
W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J.
Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept
laser and application to high-speed optical frequency domain imaging,"
Opt. Lett. 35, 2919-2921 (2010).
[Crossref]
D. J. Faber, E. G. Mik, M. C. G. Aalders, and T.
G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by
spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438
(2003).
[Crossref]
A. Bilenca, S. H. Yun, G. J. Tearney, and B. E.
Bouma, "Numerical study of wavelength-swept semiconductor ring lasers:
the role of refractive-index nonlinearities in semiconductor optical
amplifiers and implications for biomedical imaging applications," Opt.
Lett. 31, 760-762 (2006).
[Crossref]
U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li,
C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical
coherence tomography," Opt. Lett. 25, 111-113 (2000).
[Crossref]
C. Xu, J. Ye, D. L. Marks, and S. A. Boppart,
"Nearinfrared dyes as contrast-enhancing agents for spectroscopic
optical coherence tomography," Opt. Lett. 29, 1647-1649
(2004).
[Crossref]
V. J. Srinivasan, R. Huber, I. Gorczynska, J. G.
Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed,
highresolution optical coherence tomography and retinal imaging with a
frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363
(2007).
[Crossref]
R. S. Chinn, E. A. Swanson, and J. G. Fujimoto,
"Optical coherence tomography using a frequency-tunable optical
source," Opt. Lett. 22, 340-342 (1997).
[Crossref]
M. Kuznetsov, W. Atia, B. Johnson, and D.
Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for
OCT imaging applications," Proc. SPIE 7554, 75541F
(2010).
K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa,
and C. Chong, "MEMS scanner based swept source laser for optical
coherence tomography," Proc. SPIE 7554, 75542Q (2010).
D. Huang, E. A. Swanson, C. P. Lin, J. S.
Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.
Puliafito, and J. G. Fujimoto, "Optical coherence tomography,"
Science 254, 1178-1181 (1991).
[Crossref]
A. N. S. Institute, "American national
standard for safe use of lasers," in ANSI Z 136-1
(2000).
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.