Abstract

In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, USA, 1996).
  3. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef]
  4. T. Kreis, Handbook of Holographic Interferometry (Wiley, New York, USA, 2005).
  5. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three dimensional imaging and display using computational holographic imaging," Proc. IEEE 94, 636-654 (2006).
    [CrossRef]
  6. L. Martinez and B. Javidi, "Synthetic aperture single-exposure on-axis digital holography," Opt. Express 16, 161-169 (2008).
    [CrossRef]
  7. F. Dubois, L. Joannes, and J.-C. Legros, "Improved threedimensional imaging with digital holography microscope using a partial spatial coherent source," Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  8. D. Abdelsalam, B. Baek, Y. Cho, and D. Kim, "Surface form measurement using single shot off-axis Fizeau interferometry," J. Opt. Soc. Korea 14, 409-414 (2010)
    [CrossRef]
  9. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
    [CrossRef]
  10. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude and quantitative phase contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  11. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, "Reconstruction of in-line digital holograms from two intensity measurements," Opt. Lett. 29, 1787-1789 (2004).
    [CrossRef]
  12. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, "Polarization imaging of a three-dimensional object by use of on-axis phase-shifting digital holography," Opt. Lett. 32, 481-483 (2007).
    [CrossRef]
  13. B. Javidi and E. Tajahuerce, "Three dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000).
    [CrossRef]
  14. B. Javidi and D. Kim, "Three-dimensional-object recognition by use of single-exposure on-axis digital holography," Opt. Lett. 30, 236-238 (2005).
    [CrossRef]
  15. H. Lee, S. Kim, and D. Kim, "Two step on-axis digital holography using dual-channel Mach-Zehnder interferometer and matched filter algorithm," J. Opt. Soc. Korea 14, 363-367 (2010).
    [CrossRef]
  16. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492-4506 (2005).
    [CrossRef]
  17. A. Stern and B. Javidi, "Theoretical analysis of three-dimensional imaging and recognition of microorganism technique using single-exposure on-line (SEOL) digital holography," J. Opt. Soc. Am. A 24, 163-168 (2007).
    [CrossRef]
  18. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, "Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy," Proc. IEEE 97, 990-1010 (2009).
    [CrossRef]
  19. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, "Real-time digital holographic microscopy using the graphic processing unit," Opt. Express 16, 11776-11781 (2008).
    [CrossRef]

2010 (2)

D. Abdelsalam, B. Baek, Y. Cho, and D. Kim, "Surface form measurement using single shot off-axis Fizeau interferometry," J. Opt. Soc. Korea 14, 409-414 (2010)
[CrossRef]

H. Lee, S. Kim, and D. Kim, "Two step on-axis digital holography using dual-channel Mach-Zehnder interferometer and matched filter algorithm," J. Opt. Soc. Korea 14, 363-367 (2010).
[CrossRef]

2009 (1)

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, "Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy," Proc. IEEE 97, 990-1010 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three dimensional imaging and display using computational holographic imaging," Proc. IEEE 94, 636-654 (2006).
[CrossRef]

2005 (3)

2004 (2)

2000 (1)

1999 (2)

1997 (1)

1996 (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, USA, 1996).

1967 (1)

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Opt. Soc. Am. A (1)

Journal of the Optical Society of Korea (2)

H. Lee, S. Kim, and D. Kim, "Two step on-axis digital holography using dual-channel Mach-Zehnder interferometer and matched filter algorithm," J. Opt. Soc. Korea 14, 363-367 (2010).
[CrossRef]

D. Abdelsalam, B. Baek, Y. Cho, and D. Kim, "Surface form measurement using single shot off-axis Fizeau interferometry," J. Opt. Soc. Korea 14, 409-414 (2010)
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Proc. IEEE (2)

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, "Three dimensional imaging and display using computational holographic imaging," Proc. IEEE 94, 636-654 (2006).
[CrossRef]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, "Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy," Proc. IEEE 97, 990-1010 (2009).
[CrossRef]

Other (2)

T. Kreis, Handbook of Holographic Interferometry (Wiley, New York, USA, 2005).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, USA, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.