Abstract

Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
    [CrossRef]
  2. R. Ulrich, "Fiber-optic rotation sensing with low drift," Opt. Lett. 5, 173-175 (1980).
    [CrossRef]
  3. D. M. Shupe, "Thermally induced nonreciprocity in the fiber-optic interferometer," Appl. Opt. 19, 654-655 (1980).
    [CrossRef]
  4. N. J. Frigo, "Compensation of linear sources of nonreciprocity in Sagnac interferometers," Proc. SPIE 412, 268-271 (1983).
  5. C. M. Lofts, M. Parker, and C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils," Opt. Eng. 34, 2856-2863 (1995).
    [CrossRef]
  6. O. F. J. Tirat and J. F. M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).
  7. H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 6.
  8. A. Cordova, D. J. Bilinski, S. N. Fersht, G. M. Surabian, J. D. Wilde, and P. A. Hinman, "Sensor coil for low bias fiber optic gyroscope," U. S. patent 5371593 (1994).
  9. F. Mohr and F. Schadt, "Rigorous treatment of fiberenvironmental interactions in fiber gyroscopes," in Proc. IEEE REGION 8 SIBIRCON 2008 (Novosibirsk Scientific Centre, Russia, July 2008), pp. 372-375.
  10. H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 2.
  11. J. A. Pavlath, "Closed-loop fiber optic gyros," Proc. SPIE 2837, 46-60 (1996).
  12. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, "All-singlemode fiber-optic gyroscope with long-term stability," Opt. Lett. 6, 502-504 (1981).
    [CrossRef]
  13. K. Petermann, "Intensity-dependent nonreciprocal phase shift in fiber-optic gyroscopes for light sources with low coherence," Opt. Lett. 7, 623-625 (1982).
    [CrossRef]
  14. W. K. Burns and R. P. Moeller, "Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources," J. Lightwave Technol. 2, 430-435 (1984).
    [CrossRef]
  15. W. S. Choi and M. S. Jo, "Accurate evaluation of polarization characteristics in the integrated optic chip for interferometric fiber optic gyroscope based on path-matched interferometry," J. Opt. Soc. Korea 13, 439-444 (2009).
    [CrossRef]
  16. K. Petermann, K. Bohm, and E. Weidel, "Sensitivity of a fiber-optic gyroscope to environmental magnetic fields," Opt. Lett. 7, 180-182 (1982).
    [CrossRef]
  17. A. Goldsmith, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, USA, 1961).

2009 (1)

W. S. Choi and M. S. Jo, "Accurate evaluation of polarization characteristics in the integrated optic chip for interferometric fiber optic gyroscope based on path-matched interferometry," J. Opt. Soc. Korea 13, 439-444 (2009).
[CrossRef]

2008 (1)

F. Mohr and F. Schadt, "Rigorous treatment of fiberenvironmental interactions in fiber gyroscopes," in Proc. IEEE REGION 8 SIBIRCON 2008 (Novosibirsk Scientific Centre, Russia, July 2008), pp. 372-375.

1996 (2)

O. F. J. Tirat and J. F. M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).

J. A. Pavlath, "Closed-loop fiber optic gyros," Proc. SPIE 2837, 46-60 (1996).

1995 (1)

C. M. Lofts, M. Parker, and C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils," Opt. Eng. 34, 2856-2863 (1995).
[CrossRef]

1994 (1)

A. Cordova, D. J. Bilinski, S. N. Fersht, G. M. Surabian, J. D. Wilde, and P. A. Hinman, "Sensor coil for low bias fiber optic gyroscope," U. S. patent 5371593 (1994).

1993 (2)

H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 6.

H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 2.

1984 (2)

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

W. K. Burns and R. P. Moeller, "Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources," J. Lightwave Technol. 2, 430-435 (1984).
[CrossRef]

1983 (1)

N. J. Frigo, "Compensation of linear sources of nonreciprocity in Sagnac interferometers," Proc. SPIE 412, 268-271 (1983).

1982 (2)

1981 (1)

1980 (2)

1961 (1)

A. Goldsmith, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, USA, 1961).

Appl. Opt. (1)

J. Lightwave Technol. (2)

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, "An overview of fiber-optic gyroscopes," J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

W. K. Burns and R. P. Moeller, "Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources," J. Lightwave Technol. 2, 430-435 (1984).
[CrossRef]

Journal of the Optical Society of Korea (1)

W. S. Choi and M. S. Jo, "Accurate evaluation of polarization characteristics in the integrated optic chip for interferometric fiber optic gyroscope based on path-matched interferometry," J. Opt. Soc. Korea 13, 439-444 (2009).
[CrossRef]

Opt. Eng. (1)

C. M. Lofts, M. Parker, and C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils," Opt. Eng. 34, 2856-2863 (1995).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE REGION 8 SIBIRCON 2008 (1)

F. Mohr and F. Schadt, "Rigorous treatment of fiberenvironmental interactions in fiber gyroscopes," in Proc. IEEE REGION 8 SIBIRCON 2008 (Novosibirsk Scientific Centre, Russia, July 2008), pp. 372-375.

Proc. SPIE (3)

N. J. Frigo, "Compensation of linear sources of nonreciprocity in Sagnac interferometers," Proc. SPIE 412, 268-271 (1983).

O. F. J. Tirat and J. F. M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).

J. A. Pavlath, "Closed-loop fiber optic gyros," Proc. SPIE 2837, 46-60 (1996).

Other (4)

H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 6.

A. Cordova, D. J. Bilinski, S. N. Fersht, G. M. Surabian, J. D. Wilde, and P. A. Hinman, "Sensor coil for low bias fiber optic gyroscope," U. S. patent 5371593 (1994).

H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Inc., Norwood, MA, USA, 1993), Chapter 2.

A. Goldsmith, Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, USA, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.