Abstract

A new iterative algorithm is developed to estimate LIDAR ratio for a thin cirrus cloud over an aerosol layer. First, the thin cirrus cloud is screened out and replaced by a modeled LIDAR signal and the extinction coefficients of the aerosol layer are derived using the Fernald backward method. These aerosol coefficients are referred as the "actual values". Second, the original LIDAR signal which includes the thin cirrus cloud is also inverted by the Fernald backward method down to the aerosol layer but using different LIDAR ratio for the thin cirrus cloud. Depending on the different assumptions about the LIDAR ratio of the thin cirrus cloud, different sets of aerosol extinction can be derived. The "actual values" which are found in the first step can be used to constrain this iterative progress and the correct LIDAR ratio of the thin cirrus cloud can be found. The detailed description of this method and retrieval examples are given in the paper. The cases compared with other methods are presented and the statistical result is also shown and agrees well with other studies.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. H. Nazaryan, M. P. McCormick, and W. P. Menzel, "Global characterization of cirrus clouds using CALIPSO data," J. Geophys. Res. 113, D16211 (2008).
    [CrossRef]
  2. K. Sassen, Z. Wang, and D. Liu, "Global distribution of cirrus clouds from cloudsat/cloud-aerosol LIDAR and infrared pathfinder satellite observations (CALIPSO) measurements," J. Geophys. Res. 113, D00A12 (2008).
    [CrossRef]
  3. K. Sassen and B. S. Cho, "Subvisual-thin cirrus LIDAR dataset for satellite verification and climatological research," J. Appl. Meteor. 31, 1275-1285 (1992).
    [CrossRef]
  4. W. Chen, C. Chiang, and J. Nee, "LIDAR ratio and depolarization ratio for cirrus clouds," Appl. Opt. 41, 6470-6476 (2002).
    [CrossRef]
  5. Z. Wang and K. Sassen, "Cloud type and macrophysical property retrieval using multiple remote sensors," J. Appl. Meteor. 40, 1665-1682 (2001).
    [CrossRef]
  6. K. Sassen and R. L. Petrilla, "LIDAR depolarization and multiple scattering in marine stratus clouds," Appl. Opt. 25, 1450-1459 (1986).
    [CrossRef]
  7. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter LIDAR," Appl. Opt. 31, 7113-7131 (1992).
    [CrossRef]
  8. C. J. Grund and E. W. Eloranta, "The 27-28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution LIDAR," Mon. Weather Rev. 118, 2344-2355 (1990).
    [CrossRef]
  9. A. Y. Stuart, "Analysis of LIDAR backscatter profiles in optically thin cloud," Appl. Opt. 34, 7019-7030 (1995).
    [CrossRef]
  10. X. Xue and J. Zhou, "A method to determine averaged LIDAR ratio in high-altitude thin cirrus," Chinese Journal of Quantum Electronics 23, 115-119 (2006).
  11. F. G. Fernald, "Analysis of atmospheric LIDAR observation: some comments," Appl. Opt. 23, 652-653 (1984).
    [CrossRef]
  12. R. P. Shiv, W. Steinbrecht, and I. C. Allan, "Automated method for LIDAR determination of cloud-base height and vertical extent," Appl. Opt. 31, 1488-1494 (1992).
    [CrossRef]
  13. D. M. Winker and M. A. Vaughan, "Vertical distribution of clouds over Hampton, Virginia, observed by LIDAR under the ECLIPS and FIRE ETO programs," Atmos. Res. 34, 117-133 (1994).
    [CrossRef]
  14. K. Sassen and Z. Wang, "The need for a universal cloud property algorithm for active remote sensors," in Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (San Antonio, TX, USA, 1999), pp. 169-173.
  15. J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, "Operational cloud boundary detection and analysis from micro pulse LIDAR data," in Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Tucson, AZ, USA, 1998), pp. 119-122.
  16. Z. Wang, D. Wu, D. Liu, and J. Zhou, "An algorithm to determine aerosol properties by eliminating cirrus-layer influence on Mie-LIDAR signals," J. Opt. Soc. Korea 14, 444-450 (2010).
    [CrossRef]
  17. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, USA, 1973), Chapter 4.
  18. Z. Wang, R. Chi, B. Liu, and J. Zhou, "Depolarization properties of cirrus clouds from polarization LIDAR measurements over Hefei in spring," Chinese Optics Letters 6, 235-237 (2008).
    [CrossRef]
  19. Z. Wang, D. Liu, J. Zhou, and Y. Wang, "Experimental determination of the calibration factor of polarization-Mie LIDAR," Opt. Rev. 16, 566-570 (2009).
    [CrossRef]
  20. Y. Sasano, "Tropospheric aerosol extinction coefficient profiles derived from scanning LIDAR measurements over Tsukuba, Japan, from 1990 to 1993," Appl. Opt. 35, 4941-4952 (1996).
    [CrossRef]
  21. J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, "LIDAR observation of Asian dust over Hefei, China, in spring 2000," J. Geophys. Res. 107, 4252-4259 (2002).
    [CrossRef]
  22. X. Xue and J. Zhou, "LIDAR observations of cirrus clouds over Hefei," Chinese Journal of Quantum Electronics 23, 527-532 (2006).

2010 (1)

2009 (1)

Z. Wang, D. Liu, J. Zhou, and Y. Wang, "Experimental determination of the calibration factor of polarization-Mie LIDAR," Opt. Rev. 16, 566-570 (2009).
[CrossRef]

2008 (3)

H. Nazaryan, M. P. McCormick, and W. P. Menzel, "Global characterization of cirrus clouds using CALIPSO data," J. Geophys. Res. 113, D16211 (2008).
[CrossRef]

K. Sassen, Z. Wang, and D. Liu, "Global distribution of cirrus clouds from cloudsat/cloud-aerosol LIDAR and infrared pathfinder satellite observations (CALIPSO) measurements," J. Geophys. Res. 113, D00A12 (2008).
[CrossRef]

Z. Wang, R. Chi, B. Liu, and J. Zhou, "Depolarization properties of cirrus clouds from polarization LIDAR measurements over Hefei in spring," Chinese Optics Letters 6, 235-237 (2008).
[CrossRef]

2006 (2)

X. Xue and J. Zhou, "A method to determine averaged LIDAR ratio in high-altitude thin cirrus," Chinese Journal of Quantum Electronics 23, 115-119 (2006).

X. Xue and J. Zhou, "LIDAR observations of cirrus clouds over Hefei," Chinese Journal of Quantum Electronics 23, 527-532 (2006).

2002 (2)

J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, "LIDAR observation of Asian dust over Hefei, China, in spring 2000," J. Geophys. Res. 107, 4252-4259 (2002).
[CrossRef]

W. Chen, C. Chiang, and J. Nee, "LIDAR ratio and depolarization ratio for cirrus clouds," Appl. Opt. 41, 6470-6476 (2002).
[CrossRef]

2001 (1)

Z. Wang and K. Sassen, "Cloud type and macrophysical property retrieval using multiple remote sensors," J. Appl. Meteor. 40, 1665-1682 (2001).
[CrossRef]

1999 (1)

K. Sassen and Z. Wang, "The need for a universal cloud property algorithm for active remote sensors," in Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (San Antonio, TX, USA, 1999), pp. 169-173.

1998 (1)

J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, "Operational cloud boundary detection and analysis from micro pulse LIDAR data," in Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Tucson, AZ, USA, 1998), pp. 119-122.

1996 (1)

1995 (1)

1994 (1)

D. M. Winker and M. A. Vaughan, "Vertical distribution of clouds over Hampton, Virginia, observed by LIDAR under the ECLIPS and FIRE ETO programs," Atmos. Res. 34, 117-133 (1994).
[CrossRef]

1992 (3)

1990 (1)

C. J. Grund and E. W. Eloranta, "The 27-28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution LIDAR," Mon. Weather Rev. 118, 2344-2355 (1990).
[CrossRef]

1986 (1)

1984 (1)

1973 (1)

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, USA, 1973), Chapter 4.

Appl. Opt. (7)

Atmos. Res. (1)

D. M. Winker and M. A. Vaughan, "Vertical distribution of clouds over Hampton, Virginia, observed by LIDAR under the ECLIPS and FIRE ETO programs," Atmos. Res. 34, 117-133 (1994).
[CrossRef]

Chinese Journal of Quantum Electronics (2)

X. Xue and J. Zhou, "A method to determine averaged LIDAR ratio in high-altitude thin cirrus," Chinese Journal of Quantum Electronics 23, 115-119 (2006).

X. Xue and J. Zhou, "LIDAR observations of cirrus clouds over Hefei," Chinese Journal of Quantum Electronics 23, 527-532 (2006).

Chinese Optics Letters (1)

Z. Wang, R. Chi, B. Liu, and J. Zhou, "Depolarization properties of cirrus clouds from polarization LIDAR measurements over Hefei in spring," Chinese Optics Letters 6, 235-237 (2008).
[CrossRef]

Geophys. Res. (1)

H. Nazaryan, M. P. McCormick, and W. P. Menzel, "Global characterization of cirrus clouds using CALIPSO data," J. Geophys. Res. 113, D16211 (2008).
[CrossRef]

J. Appl. Meteor. (2)

K. Sassen and B. S. Cho, "Subvisual-thin cirrus LIDAR dataset for satellite verification and climatological research," J. Appl. Meteor. 31, 1275-1285 (1992).
[CrossRef]

Z. Wang and K. Sassen, "Cloud type and macrophysical property retrieval using multiple remote sensors," J. Appl. Meteor. 40, 1665-1682 (2001).
[CrossRef]

J. Geophys. Res. (2)

K. Sassen, Z. Wang, and D. Liu, "Global distribution of cirrus clouds from cloudsat/cloud-aerosol LIDAR and infrared pathfinder satellite observations (CALIPSO) measurements," J. Geophys. Res. 113, D00A12 (2008).
[CrossRef]

J. Zhou, G. Yue, C. Jin, F. Qi, D. Liu, H. Hu, Z. Gong, G. Shi, T. Nakajima, and T. Takamura, "LIDAR observation of Asian dust over Hefei, China, in spring 2000," J. Geophys. Res. 107, 4252-4259 (2002).
[CrossRef]

J. Opt. Soc. Korea (1)

Mon. Weather Rev. (1)

C. J. Grund and E. W. Eloranta, "The 27-28 October 1986 FIRE IFO cirrus case study: cloud optical properties determined by high spectral resolution LIDAR," Mon. Weather Rev. 118, 2344-2355 (1990).
[CrossRef]

Opt. Rev. (1)

Z. Wang, D. Liu, J. Zhou, and Y. Wang, "Experimental determination of the calibration factor of polarization-Mie LIDAR," Opt. Rev. 16, 566-570 (2009).
[CrossRef]

Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (1)

J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, "Operational cloud boundary detection and analysis from micro pulse LIDAR data," in Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting (Tucson, AZ, USA, 1998), pp. 119-122.

Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (1)

K. Sassen and Z. Wang, "The need for a universal cloud property algorithm for active remote sensors," in Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting (San Antonio, TX, USA, 1999), pp. 169-173.

Other (1)

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, USA, 1973), Chapter 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.