Abstract

A poling method using multiple negative voltage was introduced to fabricate periodically poled lithium niobate (PPLN) devices with quasi-phase matching (QPM) period of 12.9 μm by utilizing an real-time visualization system. We also performed variation of the electric field during the poling. Two different conventionally used poling method, negative and positive single pulses, were used and the poling quality compared through microscopic images and far-field diffraction pattern analysis. Etched images on the +z and –z surfaces of PPLN showed that negative multiple pulse poling presented the highest periodicity in domain structures among the three methods. Duty ratio and its standard deviation were measured by analyzing far-field diffraction patterns. The newly introduced method of negative multiple pulse poling had duty ratio of 0.42 which was close to the ideal value of 0.50 and standard deviation of 0.020 that was about 3 times smaller than that of the other conventional methods.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. D. S. Hum and M. M. Fejer, "Quasi-phasematching," Comptes Rendus Physique 8, 180-198 (2007).
    [CrossRef]
  2. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press Inc., San Diego, USA, 2008).
  3. E. J. Lim, M. M. Fejer, and R. L. Byer, "Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide," Electron. Lett. 25, 174-175 (1989).
    [CrossRef]
  4. S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, "Quaiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides," Electron. Lett. 27, 2040-2042 (1991).
    [CrossRef]
  5. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled <TEX>$LiNbO_3$</TEX>," J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  6. A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric <TEX>$MgO:LiNbO_3$</TEX> by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
    [CrossRef]
  7. A. Harada and Y. Nihei, "Bulk periodically poled <TEX>$MgO-LiNbO_3$</TEX> by corona discharge method," Appl. Phys. Lett. 69, 2629-2631 (1996).
    [CrossRef]
  8. H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent <TEX>$MgO:LiNbO_3$</TEX> crystals at elevated temperature," Appl. Phys. Lett. 82, 4602-4604 (2003).
    [CrossRef]
  9. M. Fujimura, T. Sohmura, and T. Suhara, "Fabrication of domain-inverted gratings in <TEX>$MgO:LiNbO_3$</TEX> by applying voltage under ultraviolet irradiation through photomask at room temperature," Electron. Lett. 39, 719-721 (2003).
    [CrossRef]
  10. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, "Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation," Appl. Phys. Lett. 75, 1673-1675 (1999).
    [CrossRef]
  11. M. J. Missey, S. Russell, V. Dominic, R. G. Batchko, and K. L. Schepler, "Real-time visualization of domain formation in periodically poled lithium niobate," Opt. Express 6, 186-195 (2000).
    [CrossRef]
  12. V. Gopalan, Q. X. Jia, and T. E. Mitchell, "In situ video observation of <TEX>$180^{\circ}$</TEX> domain kinetics in congruent <TEX>$LiNbO_3$</TEX> crystals," Appl. Phys. Lett. 75, 2482-2484 (1999).
    [CrossRef]
  13. O. Y. Jeon, "Broadband optical parametric interactions in periodically poled lithium niobate crystals," Ph.D. Thesis, Pusan National University (2006).
  14. G. D. Miller, "Periodically poled lithium niobate : modeling, fabrication, and nonlinear-optical performance," Ph.D. Thesis, Stanford University (1998).
  15. J. H. Ro, "Poling dynamics of lithium niobate crystals for nonlinear optical applications," Ph.D. Thesis, Pusan National University (2001).
  16. N. E. Yu and J. H. Ro, "In-situ visualization method of domain boundary for stoichiometric lithium niobate crystal," Jpn. J. Appl. Phys. 48, 121407 (2009).
    [CrossRef]
  17. M.-J. Jin, O.-Y. Jeon, B.-J. Kim, and M. Cha, "Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement," J. Korean Phys. Soc. 47, S336-S339 (2005).
  18. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M. Cha, "Poling quality evaluation of periodically poled lithium niobate using diffraction method," J. Opt. Soc. Korea 12, 205-209 (2008).
    [CrossRef]
  19. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, and M. Cha, "Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction," Opt. Express 17, 17862-17867 (2009).
    [CrossRef]

2009 (2)

N. E. Yu and J. H. Ro, "In-situ visualization method of domain boundary for stoichiometric lithium niobate crystal," Jpn. J. Appl. Phys. 48, 121407 (2009).
[CrossRef]

K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, and M. Cha, "Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction," Opt. Express 17, 17862-17867 (2009).
[CrossRef]

2008 (2)

K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M. Cha, "Poling quality evaluation of periodically poled lithium niobate using diffraction method," J. Opt. Soc. Korea 12, 205-209 (2008).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press Inc., San Diego, USA, 2008).

2007 (1)

D. S. Hum and M. M. Fejer, "Quasi-phasematching," Comptes Rendus Physique 8, 180-198 (2007).
[CrossRef]

2006 (1)

O. Y. Jeon, "Broadband optical parametric interactions in periodically poled lithium niobate crystals," Ph.D. Thesis, Pusan National University (2006).

2005 (1)

M.-J. Jin, O.-Y. Jeon, B.-J. Kim, and M. Cha, "Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement," J. Korean Phys. Soc. 47, S336-S339 (2005).

2003 (2)

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent <TEX>$MgO:LiNbO_3$</TEX> crystals at elevated temperature," Appl. Phys. Lett. 82, 4602-4604 (2003).
[CrossRef]

M. Fujimura, T. Sohmura, and T. Suhara, "Fabrication of domain-inverted gratings in <TEX>$MgO:LiNbO_3$</TEX> by applying voltage under ultraviolet irradiation through photomask at room temperature," Electron. Lett. 39, 719-721 (2003).
[CrossRef]

2001 (1)

J. H. Ro, "Poling dynamics of lithium niobate crystals for nonlinear optical applications," Ph.D. Thesis, Pusan National University (2001).

2000 (1)

1999 (2)

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, "Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation," Appl. Phys. Lett. 75, 1673-1675 (1999).
[CrossRef]

V. Gopalan, Q. X. Jia, and T. E. Mitchell, "In situ video observation of <TEX>$180^{\circ}$</TEX> domain kinetics in congruent <TEX>$LiNbO_3$</TEX> crystals," Appl. Phys. Lett. 75, 2482-2484 (1999).
[CrossRef]

1998 (1)

G. D. Miller, "Periodically poled lithium niobate : modeling, fabrication, and nonlinear-optical performance," Ph.D. Thesis, Stanford University (1998).

1996 (2)

A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric <TEX>$MgO:LiNbO_3$</TEX> by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
[CrossRef]

A. Harada and Y. Nihei, "Bulk periodically poled <TEX>$MgO-LiNbO_3$</TEX> by corona discharge method," Appl. Phys. Lett. 69, 2629-2631 (1996).
[CrossRef]

1995 (1)

1991 (1)

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, "Quaiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides," Electron. Lett. 27, 2040-2042 (1991).
[CrossRef]

1989 (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, "Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide," Electron. Lett. 25, 174-175 (1989).
[CrossRef]

Appl. Phys. Lett. (5)

A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric <TEX>$MgO:LiNbO_3$</TEX> by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
[CrossRef]

A. Harada and Y. Nihei, "Bulk periodically poled <TEX>$MgO-LiNbO_3$</TEX> by corona discharge method," Appl. Phys. Lett. 69, 2629-2631 (1996).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent <TEX>$MgO:LiNbO_3$</TEX> crystals at elevated temperature," Appl. Phys. Lett. 82, 4602-4604 (2003).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, "Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation," Appl. Phys. Lett. 75, 1673-1675 (1999).
[CrossRef]

V. Gopalan, Q. X. Jia, and T. E. Mitchell, "In situ video observation of <TEX>$180^{\circ}$</TEX> domain kinetics in congruent <TEX>$LiNbO_3$</TEX> crystals," Appl. Phys. Lett. 75, 2482-2484 (1999).
[CrossRef]

Comptes Rendus Physique (1)

D. S. Hum and M. M. Fejer, "Quasi-phasematching," Comptes Rendus Physique 8, 180-198 (2007).
[CrossRef]

Electron. Lett. (3)

E. J. Lim, M. M. Fejer, and R. L. Byer, "Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide," Electron. Lett. 25, 174-175 (1989).
[CrossRef]

S. Matsumoto, E. J. Lim, H. M. Hertz, and M. M. Fejer, "Quaiphase-matched second harmonic generation of blue light in electrically periodically-poled lithium tantalate waveguides," Electron. Lett. 27, 2040-2042 (1991).
[CrossRef]

M. Fujimura, T. Sohmura, and T. Suhara, "Fabrication of domain-inverted gratings in <TEX>$MgO:LiNbO_3$</TEX> by applying voltage under ultraviolet irradiation through photomask at room temperature," Electron. Lett. 39, 719-721 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

M.-J. Jin, O.-Y. Jeon, B.-J. Kim, and M. Cha, "Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement," J. Korean Phys. Soc. 47, S336-S339 (2005).

J. Opt. Soc. Am. B (1)

Journal of the Optical Society of Korea (1)

K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M. Cha, "Poling quality evaluation of periodically poled lithium niobate using diffraction method," J. Opt. Soc. Korea 12, 205-209 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. E. Yu and J. H. Ro, "In-situ visualization method of domain boundary for stoichiometric lithium niobate crystal," Jpn. J. Appl. Phys. 48, 121407 (2009).
[CrossRef]

Opt. Express (2)

Other (4)

O. Y. Jeon, "Broadband optical parametric interactions in periodically poled lithium niobate crystals," Ph.D. Thesis, Pusan National University (2006).

G. D. Miller, "Periodically poled lithium niobate : modeling, fabrication, and nonlinear-optical performance," Ph.D. Thesis, Stanford University (1998).

J. H. Ro, "Poling dynamics of lithium niobate crystals for nonlinear optical applications," Ph.D. Thesis, Pusan National University (2001).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press Inc., San Diego, USA, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.