Abstract

We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. H. Kim, J. H. Cho, S. H. Kim, K. U. Song, H. L. Lee, J. H. Lee, B. J. Kim, Y. J. Oh, J. K. Lee, and S. T. Hwang, "Radio-over fiber systems for TDD-based OFDMA wireless communication systems," J. Lightwave Technol. 25, 3419-3427 (2007).
    [Crossref]
  2. P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, "PER and EVM measurements of a radio-over-fiber network for cellular and WLAN system applications," J. Lightwave Technol. 22, 2370-2376 (2004).
    [Crossref]
  3. M. K. Hong, S. K. Han, and S. H. Lee, "Linearization of DFB LD by using cross gain modulation of reflective SOA in radio-over-fiber link," J. Opt. Soc. Korea 11, 158-161 (2007).
    [Crossref]
  4. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," J. Lightwave Technol. 20, 417-427 (2002).
    [Crossref]
  5. H. Kosek, Y. He, X. Gu, and X. N. Fernando, "All-optical demultiplexing of WLAN and cellular CDMA radio signals," J. Lightwave Technol. 20, 1401-1409 (2007).
  6. D. Wake, A. Nkansah, and N. J. Gomes, "Radio over fiber link design for next generation wireless systems," J. Lightwave Technol. 28, 2456-2464 (2010).
    [Crossref]
  7. J. M. Fuster, J. Marti, J. L. Corral, V. Polo, and F. Ramos, "Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links," J. Lightwave Technol. 18, 933-940 (2000).
    [Crossref]
  8. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems," IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
    [Crossref]
  9. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "Dispersiontolerant data transmission based on the use of fiber-induced self-phase modulation in microwave optical links," Microwave Opt. Technol. Lett. 27, 1-4 (2000).
    [Crossref]
  10. C. Desem, "Composite second order distortion due to self-phase modulation in externally-modulated optical AM-SCM systems operating at 1550 nm," Electron. Lett. 30, 2055-2056 (1994).
    [Crossref]
  11. M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, "Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals," IEEE Photon. Technol. Lett. 3, 481-483 (1991).
    [Crossref]
  12. C. Y. Kuo and E. E. Bergmann, "Second-order distortion and electronic compensation in analog links containing fiber amplifiers," J. Lightwave Technol. 10, 1751-1759 (1992).
    [Crossref]
  13. K. S. Kim, J. C. Jeong, and J. H. Lee, "Effect of fiber dispersion and self-phase modulation in multi-channel subcarrier multiplexed optical signal transmission," J. Opt. Soc. Korea 14, 351-356 (2010).
    [Crossref]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, USA, 1989).
  15. H. D. Jang, K. S. Kim, J. H. Lee, and J. C. Jeong, "Transmission performance of 40 Gb/s PM duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques," J. Opt. Soc. Korea 13, 354-360 (2009).
    [Crossref]
  16. Y. H. Kim, H. D. Jang, S. I. Kim, S. H. Oh, J. H. Lee, K. S. Kim, H. L. Lee, and J. C. Jeong, "Comparison of transmission performance of 40-Gb/s optical duobinary and DCS-RZ signals using 10- and 40-Gb/s <TEX>$LiNbO_3$</TEX> Mach-Zehnder modulators," J. Lightwave Technol. 25, 318-324 (2007).
    [Crossref]

2010 (2)

D. Wake, A. Nkansah, and N. J. Gomes, "Radio over fiber link design for next generation wireless systems," J. Lightwave Technol. 28, 2456-2464 (2010).
[Crossref]

K. S. Kim, J. C. Jeong, and J. H. Lee, "Effect of fiber dispersion and self-phase modulation in multi-channel subcarrier multiplexed optical signal transmission," J. Opt. Soc. Korea 14, 351-356 (2010).
[Crossref]

2009 (1)

H. D. Jang, K. S. Kim, J. H. Lee, and J. C. Jeong, "Transmission performance of 40 Gb/s PM duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques," J. Opt. Soc. Korea 13, 354-360 (2009).
[Crossref]

2007 (4)

2004 (1)

2002 (1)

2000 (2)

J. M. Fuster, J. Marti, J. L. Corral, V. Polo, and F. Ramos, "Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links," J. Lightwave Technol. 18, 933-940 (2000).
[Crossref]

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "Dispersiontolerant data transmission based on the use of fiber-induced self-phase modulation in microwave optical links," Microwave Opt. Technol. Lett. 27, 1-4 (2000).
[Crossref]

1998 (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems," IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[Crossref]

1994 (1)

C. Desem, "Composite second order distortion due to self-phase modulation in externally-modulated optical AM-SCM systems operating at 1550 nm," Electron. Lett. 30, 2055-2056 (1994).
[Crossref]

1992 (1)

C. Y. Kuo and E. E. Bergmann, "Second-order distortion and electronic compensation in analog links containing fiber amplifiers," J. Lightwave Technol. 10, 1751-1759 (1992).
[Crossref]

1991 (1)

M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, "Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals," IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[Crossref]

1989 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, USA, 1989).

Electron. Lett. (1)

C. Desem, "Composite second order distortion due to self-phase modulation in externally-modulated optical AM-SCM systems operating at 1550 nm," Electron. Lett. 30, 2055-2056 (1994).
[Crossref]

IEEE Photon. Technol. Lett (1)

M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, "Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals," IEEE Photon. Technol. Lett. 3, 481-483 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems," IEEE Photon. Technol. Lett. 10, 1473-1475 (1998).
[Crossref]

J. Lightwave Technol. (8)

C. Y. Kuo and E. E. Bergmann, "Second-order distortion and electronic compensation in analog links containing fiber amplifiers," J. Lightwave Technol. 10, 1751-1759 (1992).
[Crossref]

H. Kosek, Y. He, X. Gu, and X. N. Fernando, "All-optical demultiplexing of WLAN and cellular CDMA radio signals," J. Lightwave Technol. 20, 1401-1409 (2007).

J. M. Fuster, J. Marti, J. L. Corral, V. Polo, and F. Ramos, "Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links," J. Lightwave Technol. 18, 933-940 (2000).
[Crossref]

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," J. Lightwave Technol. 20, 417-427 (2002).
[Crossref]

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, "PER and EVM measurements of a radio-over-fiber network for cellular and WLAN system applications," J. Lightwave Technol. 22, 2370-2376 (2004).
[Crossref]

Y. H. Kim, H. D. Jang, S. I. Kim, S. H. Oh, J. H. Lee, K. S. Kim, H. L. Lee, and J. C. Jeong, "Comparison of transmission performance of 40-Gb/s optical duobinary and DCS-RZ signals using 10- and 40-Gb/s <TEX>$LiNbO_3$</TEX> Mach-Zehnder modulators," J. Lightwave Technol. 25, 318-324 (2007).
[Crossref]

H. Kim, J. H. Cho, S. H. Kim, K. U. Song, H. L. Lee, J. H. Lee, B. J. Kim, Y. J. Oh, J. K. Lee, and S. T. Hwang, "Radio-over fiber systems for TDD-based OFDMA wireless communication systems," J. Lightwave Technol. 25, 3419-3427 (2007).
[Crossref]

D. Wake, A. Nkansah, and N. J. Gomes, "Radio over fiber link design for next generation wireless systems," J. Lightwave Technol. 28, 2456-2464 (2010).
[Crossref]

Journal of the Optical Society of Korea (3)

K. S. Kim, J. C. Jeong, and J. H. Lee, "Effect of fiber dispersion and self-phase modulation in multi-channel subcarrier multiplexed optical signal transmission," J. Opt. Soc. Korea 14, 351-356 (2010).
[Crossref]

H. D. Jang, K. S. Kim, J. H. Lee, and J. C. Jeong, "Transmission performance of 40 Gb/s PM duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques," J. Opt. Soc. Korea 13, 354-360 (2009).
[Crossref]

M. K. Hong, S. K. Han, and S. H. Lee, "Linearization of DFB LD by using cross gain modulation of reflective SOA in radio-over-fiber link," J. Opt. Soc. Korea 11, 158-161 (2007).
[Crossref]

Opt. Technol. Lett. (1)

F. Ramos, J. Marti, V. Polo, and J. M. Fuster, "Dispersiontolerant data transmission based on the use of fiber-induced self-phase modulation in microwave optical links," Microwave Opt. Technol. Lett. 27, 1-4 (2000).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, USA, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.