Abstract

Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-μm band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system’s measurement speed was 7.96 kHz, the measured axial resolution was 9.6 μm in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
    [CrossRef]
  3. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef]
  4. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-$m wavelength region," Appl. Opt. 12, 555-563 (1973).
  5. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
    [CrossRef]
  6. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
    [CrossRef]
  7. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 <TEX>${\mu}m$</TEX> for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073901 (2006).
    [CrossRef]
  8. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
    [CrossRef]
  9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  10. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Comm. 229, 79-84 (2004).
    [CrossRef]
  11. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
    [CrossRef]
  12. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004).
    [CrossRef]
  13. E. Gotzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005).
    [CrossRef]
  14. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1965 (2006).
    [CrossRef]
  15. R. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  16. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
    [CrossRef]
  17. P. Bu, X. Wang, and O. Sasaki, "Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry," J. Opt. A: Pure Appl. Opt. 9, 422-426 (2007).
    [CrossRef]
  18. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
    [CrossRef]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007).
    [CrossRef]
  20. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
    [CrossRef]
  21. L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3455 (2007).
    [CrossRef]
  22. A. Bachmann, R. Michaely, T. Lasser, and R. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007).
    [CrossRef]
  23. A. Vakhtin, K. Peterson, and D. Kane, "Demonstration of complex-conjugate-resolved harmonic Fourier-domain optical coherence tomography imaging of biological samples," Appl. Opt. 46, 3870-3877 (2007).
    [CrossRef]
  24. B. Vakoc, S Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
    [CrossRef]
  25. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using <TEX>$3{\times}3$</TEX> fiber couplers," Opt. Express 13, 957-967 (2005).
    [CrossRef]
  26. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef]
  27. T. Fabritius, S. Makita, M. Yamanari, R. Myllyla, T. Yatagai, and Y. Yasuno, "Full range <TEX>$1-{\mu}m$</TEX> spectral domain optical coherence tomography by using electro-optical phase modulator," Proc. SPIE 6847, 68471S1-10 (2008).
  28. S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-764 (2008).
    [CrossRef]
  29. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, highspeed, high-resolution <TEX>$1-{\mu}m$</TEX> spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
    [CrossRef]
  30. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
    [CrossRef]
  31. R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
    [CrossRef]
  32. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 <TEX>${\mu}m$</TEX> wavelength," Opt. Express 11, 3598-3604 (2003).
    [CrossRef]

2008 (3)

2007 (9)

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef]

A. Vakhtin, K. Peterson, and D. Kane, "Demonstration of complex-conjugate-resolved harmonic Fourier-domain optical coherence tomography imaging of biological samples," Appl. Opt. 46, 3870-3877 (2007).
[CrossRef]

A. Bachmann, R. Michaely, T. Lasser, and R. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007).
[CrossRef]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
[CrossRef]

L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3455 (2007).
[CrossRef]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
[CrossRef]

R. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

P. Bu, X. Wang, and O. Sasaki, "Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry," J. Opt. A: Pure Appl. Opt. 9, 422-426 (2007).
[CrossRef]

2006 (6)

2005 (4)

2004 (3)

2003 (3)

2002 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

1973 (1)

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 <TEX>${\mu}m$</TEX> for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073901 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

P. Bu, X. Wang, and O. Sasaki, "Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry," J. Opt. A: Pure Appl. Opt. 9, 422-426 (2007).
[CrossRef]

Opt. Comm. (2)

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Comm. 229, 79-84 (2004).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Opt. Express (13)

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 <TEX>${\mu}m$</TEX> wavelength," Opt. Express 11, 3598-3604 (2003).
[CrossRef]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004).
[CrossRef]

E. Gotzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005).
[CrossRef]

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using <TEX>$3{\times}3$</TEX> fiber couplers," Opt. Express 13, 957-967 (2005).
[CrossRef]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, highspeed, high-resolution <TEX>$1-{\mu}m$</TEX> spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008).
[CrossRef]

A. Bachmann, R. Michaely, T. Lasser, and R. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007).
[CrossRef]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003).
[CrossRef]

A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
[CrossRef]

Opt. Lett. (8)

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
[CrossRef]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007).
[CrossRef]

L. An and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3455 (2007).
[CrossRef]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007).
[CrossRef]

S. Vergnole, G. Lamouche, and M. L. Dufour, "Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher," Opt. Lett. 33, 732-764 (2008).
[CrossRef]

B. Vakoc, S Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006).
[CrossRef]

J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

Phys. Med. Biol. (1)

R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006).
[CrossRef]

Proc. SPIE (1)

T. Fabritius, S. Makita, M. Yamanari, R. Myllyla, T. Yatagai, and Y. Yasuno, "Full range <TEX>$1-{\mu}m$</TEX> spectral domain optical coherence tomography by using electro-optical phase modulator," Proc. SPIE 6847, 68471S1-10 (2008).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.