Abstract

In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004).
    [CrossRef]
  2. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera,and R. T. Chen, “Flexible optical waveguide film fabricationsand optoelectronic devices integration for fully embeddedboard level optical interconnects,” J. Lightwave Technol.22, 2168-2176 (2004).
    [CrossRef]
  3. D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R.Krchnavek, “Radiant cured polymer optical waveguides onprinted circuit boards for photonic interconnection use,” Appl.Opt. 28, 40-47 (1989).
    [CrossRef]
  4. E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005).
    [CrossRef]
  5. B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009).
    [CrossRef]
  6. D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010).
    [CrossRef]
  7. T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).
  8. G. Min, Principles of Three-dimensional Imaging inConfocal Microscopes (World Scientific, Singapore, 1996).
  9. R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).
  10. A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008).
    [CrossRef]
  11. C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).
  12. S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocaltheta fluorescence microscopy with annular apertures,” Appl.Opt. 35, 126-130 (1996).
    [CrossRef]
  13. S. Lindek and E. H. K. Stelzer, “Optical transfer functionsfor confocal theta fluorescence microscopy,” J. Opt. Soc.Am. A 13, 479-482 (1996).
    [CrossRef]
  14. M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).
  15. M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).
  16. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008).
    [CrossRef]
  17. P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, “Confocaltheta line-scanning microscope for imaging human tissues,”Appl. Opt. 46, 1843-1851 (2007).
    [CrossRef]
  18. T. Dabbs and M. Glass, “Fiber-optic confocal microscope,”Appl. Opt. 31, 3030-3035 (1992).
    [CrossRef]
  19. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000).
    [CrossRef]

2010 (1)

D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010).
[CrossRef]

2009 (1)

B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009).
[CrossRef]

2008 (3)

A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008).
[CrossRef]

C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008).
[CrossRef]

2007 (2)

M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).

P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, “Confocaltheta line-scanning microscope for imaging human tissues,”Appl. Opt. 46, 1843-1851 (2007).
[CrossRef]

2005 (1)

E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005).
[CrossRef]

2004 (3)

G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004).
[CrossRef]

R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera,and R. T. Chen, “Flexible optical waveguide film fabricationsand optoelectronic devices integration for fully embeddedboard level optical interconnects,” J. Lightwave Technol.22, 2168-2176 (2004).
[CrossRef]

2003 (1)

M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).

2000 (1)

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

1996 (3)

1992 (1)

1990 (1)

T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).

1989 (1)

Appl. Opt. (4)

Br. J. Dermatol. (1)

A. Gerger, R. Hofmann-Wellenhof, U. Langsenlehner, E.Richtig, S. Koller, W. Weger, V. Ahlgrimm-Siess, M.Horn, H. Samonigg, and J. Smolle, “In vivo confocal laserscanning microscopy of melanocytic skin tumours diagnosticapplicability using unselected tumour images,” Br. J.Dermatol. 158, 329-333 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Microscopy (1)

R. Kassies, K. O. Van Der Werf, A. Lenferink, C. N.Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “CombinedAFM and confocal fluorescence microscope for applicationsin bio-nanotechnology,” J. Microscopy 217, 109-116 (2004).

J. Nonlinear Opt. Phys. & Mater. (1)

E.-H. Lee, S. G. Lee, B. H. O, and S.-G. Park, “Polymer-basedoptical printed circuit board (O-PCB) as a potentialplatform for VLSI microphotonic integration,” J. NonlinearOpt. Phys. & Mater. 14, 409-425 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Journal of the Optical Society of Korea (2)

B.-H. Lee, N.-H. Shin, K. Jeong, M.-J. Park, B.-G. Kim,J.-H. Yoo, D.-G. Kim, K.-H. Yun, K.-S. Lee, K.-H. Kim,D.-K. Kim, and S.-H. Park, “Nondestructive optical measurementof refractive-index profile of graded-index lenses,” J.Opt. Soc. Korea 13, 468-471 (2009).
[CrossRef]

D.-S. Park, B.-H. O, S.-G. Park, E.-H. Lee, J.-H. Park, andS.-G. Lee, “Noise-robust phase gradient retrieval formulationfor phase-shifting interferometry,” J. Opt. Soc. Korea 14,131-136 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometrywith a fiber optical confocal scanning microscope,”Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

Nature Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopyfor three-dimensional mechanical imaging,” Nature Photonics2, 39-43 (2008).
[CrossRef]

Proc. SPIE (1)

G. L. Bona, B. J. Offreina, U. Bapsta, C. Bergera, R.Beyelera, R. Buddb, R. Dangela, L. Dellmanna, and F. Horsta,“Characterization of parallel optical-interconnect waveguidesintegrated on a printed circuit board,” Proc. SPIE 5453,134-141 (2004).
[CrossRef]

Other (5)

C. R. Fairley, T.-Y. Fu, B.-M. B. Tsai, and S. A. Young,“Confocal wafer inspection system and method,” U.S. Patent 0273196 (2008).

T. Wilson, Confocal Microscope (Academic Press, Oxford,UK, 1990).

G. Min, Principles of Three-dimensional Imaging inConfocal Microscopes (World Scientific, Singapore, 1996).

M. J. Mandella, M. H. Garrett, and G. S. Kino, “Integratedangled-dual-axis confocal scanning endoscopes,” U.S. Patent 6522444 (2003).

M. J. Mandella, G. S. Kino, and N. Y. Chan, “Dual-axisconfocal microscope having improved performance forthick samples,” U.S. Patent 7242521 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.