Abstract

In the present study, an optical system is proposed for maskless lithography using a digital micromirror device (DMD). The system consists of an illumination optical system, a DMD, and a projection lens system. The illumination optical system, developed for 95% uniformity, is composed of fly's eye lens plates, a 405 nm narrow band pass filter (NBPF), condensing lenses, a field lens and a 250W halogen lamp. The projection lens system, composed of 8 optical elements, is developed for 4 <TEX>${\mu}m$</TEX> resolution. The proposed system plays a role of an optical engine for PCB and/or FPD maskless lithography. Furthermore, many problems arising from the presence of masks in a conventional lithography system, such as expense and time in fabricating the masks, contamination by masks, disposal of masks, and the alignment of masks, may be solved by the proposed system. The proposed system is verified by lithography experiments which produce a line pattern with the resolution of 4 <TEX>${\mu}m$</TEX> line width.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-29 (2003).
    [CrossRef]
  2. R. Hofling and E. Ahl, “ALP: universal micromirror controller for metrology and testing,” Proc. SPIE 5289, 322-329 (2004).
    [CrossRef]
  3. W. Mei, T. Kanatake, and A. Ishikawa, “Moving exposure system and method for maskless lithography system,” U.S. Patent 6,379,867 B1 (2002).
  4. W. Mei, “Point array maskless lithography,” U.S. Patent 6,473,237 B2 (2002).
  5. A. Beeker, W. Cebuhar, J. Kreuzer, A. Latypov, and Y. Vladimirsky, “Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system utilizing overlap of exposure zones with attenuation of the aerial image in the overlap region,” U.S. Patent 6,876,440 B1 (2005).
  6. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” Journal of Microlithography, Microfabrication, and Microsystems 2, 331-339 (2003).
    [CrossRef]
  7. T. Kanatake, “High resolution point array,” U.S. Patent 6,870,604 B2 (2005).
  8. M. Seo and H. Kim, “Occupancy based pattern generation method for maskless lithography,” Patent KR 10-0655165 (2006), Patent Application Pub. No. US/12/095,037 (2008).
  9. R. Menon, A. Patel, D. Chao, M. Walsh, and H. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330-339 (2005).
    [CrossRef]
  10. G. Seitz, S. Schulte, U. Dinger, O. Hocky, B. Fellner, and M. Rupp, “EUV microlithography: a challenge for optical metrology,” Proc. SPIE 5533, 20-26 (2004).
    [CrossRef]
  11. C. Sun, N. Fang, D. Wu, and X. Zhang, “Projection microstereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113-120 (2005).
    [CrossRef]
  12. M. Seo and H. Kim, “Lithography upon micromirrors,” Computer Aided Design 39, 202-217 (2007).
    [CrossRef]
  13. W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill Professional, New York, USA, 2004), Chapter 12.
  14. J. U. Lee and S. M. Yu, “Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature,” J. Opt. Soc. Korea 13, 184-192 (2009).
    [CrossRef]
  15. S. C. Park, S. H. Lee, and J. G. Kim, “Compact zoom lens design for a 5x mobile camera using prism,” J. Opt. Soc. Korea 13, 206-212 (2009).
    [CrossRef]
  16. Y. Matsui, Lens Sekkeiho (The Method of Lens Design, witten in Japanese), 1st ed. (Kyoritsu Publication Inc., Tokyo, Japan, 1972), pp. 70-75.
  17. T. Kusakawa, Lens Kogaku (Lens optics, witten in Japanese), 1st ed. (Tokai Univ. Press, Tokyo, Japan, 1988), pp. 218-259.
  18. H. A. Buchdahl, Optical Aberration Coefficients, 1st ed. (Dover Publication Inc., New York, USA, 1968).
  19. R. W. Daniels, An Introuction to Numerical Methods and Optimization Techniques, 1st ed. (North-Holland, New York, USA, 1978), Chapter 8.
  20. M. Seo and H. Kim, “Digital photofabrication method and system,” in Proc. 2010 International Symposium on Flexible Automation (Tokyo, Japan, Jul. 2010), paper OS6.

2010 (1)

M. Seo and H. Kim, “Digital photofabrication method and system,” in Proc. 2010 International Symposium on Flexible Automation (Tokyo, Japan, Jul. 2010), paper OS6.

2009 (2)

J. U. Lee and S. M. Yu, “Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature,” J. Opt. Soc. Korea 13, 184-192 (2009).
[CrossRef]

S. C. Park, S. H. Lee, and J. G. Kim, “Compact zoom lens design for a 5x mobile camera using prism,” J. Opt. Soc. Korea 13, 206-212 (2009).
[CrossRef]

2007 (1)

M. Seo and H. Kim, “Lithography upon micromirrors,” Computer Aided Design 39, 202-217 (2007).
[CrossRef]

2006 (1)

M. Seo and H. Kim, “Occupancy based pattern generation method for maskless lithography,” Patent KR 10-0655165 (2006), Patent Application Pub. No. US/12/095,037 (2008).

2005 (4)

R. Menon, A. Patel, D. Chao, M. Walsh, and H. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330-339 (2005).
[CrossRef]

T. Kanatake, “High resolution point array,” U.S. Patent 6,870,604 B2 (2005).

A. Beeker, W. Cebuhar, J. Kreuzer, A. Latypov, and Y. Vladimirsky, “Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system utilizing overlap of exposure zones with attenuation of the aerial image in the overlap region,” U.S. Patent 6,876,440 B1 (2005).

C. Sun, N. Fang, D. Wu, and X. Zhang, “Projection microstereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113-120 (2005).
[CrossRef]

2004 (3)

W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill Professional, New York, USA, 2004), Chapter 12.

R. Hofling and E. Ahl, “ALP: universal micromirror controller for metrology and testing,” Proc. SPIE 5289, 322-329 (2004).
[CrossRef]

G. Seitz, S. Schulte, U. Dinger, O. Hocky, B. Fellner, and M. Rupp, “EUV microlithography: a challenge for optical metrology,” Proc. SPIE 5533, 20-26 (2004).
[CrossRef]

2003 (2)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-29 (2003).
[CrossRef]

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” Journal of Microlithography, Microfabrication, and Microsystems 2, 331-339 (2003).
[CrossRef]

2002 (2)

W. Mei, T. Kanatake, and A. Ishikawa, “Moving exposure system and method for maskless lithography system,” U.S. Patent 6,379,867 B1 (2002).

W. Mei, “Point array maskless lithography,” U.S. Patent 6,473,237 B2 (2002).

1988 (1)

T. Kusakawa, Lens Kogaku (Lens optics, witten in Japanese), 1st ed. (Tokai Univ. Press, Tokyo, Japan, 1988), pp. 218-259.

1978 (1)

R. W. Daniels, An Introuction to Numerical Methods and Optimization Techniques, 1st ed. (North-Holland, New York, USA, 1978), Chapter 8.

1972 (1)

Y. Matsui, Lens Sekkeiho (The Method of Lens Design, witten in Japanese), 1st ed. (Kyoritsu Publication Inc., Tokyo, Japan, 1972), pp. 70-75.

1968 (1)

H. A. Buchdahl, Optical Aberration Coefficients, 1st ed. (Dover Publication Inc., New York, USA, 1968).

Computer Aided Design (1)

M. Seo and H. Kim, “Lithography upon micromirrors,” Computer Aided Design 39, 202-217 (2007).
[CrossRef]

Journal of Microlithography, Microfabrication, and Microsystems (1)

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” Journal of Microlithography, Microfabrication, and Microsystems 2, 331-339 (2003).
[CrossRef]

Journal of the Optical Society of Korea (2)

J. U. Lee and S. M. Yu, “Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature,” J. Opt. Soc. Korea 13, 184-192 (2009).
[CrossRef]

S. C. Park, S. H. Lee, and J. G. Kim, “Compact zoom lens design for a 5x mobile camera using prism,” J. Opt. Soc. Korea 13, 206-212 (2009).
[CrossRef]

Proc. 2010 International Symposium on Flexible Automation (1)

M. Seo and H. Kim, “Digital photofabrication method and system,” in Proc. 2010 International Symposium on Flexible Automation (Tokyo, Japan, Jul. 2010), paper OS6.

Proc. SPIE (4)

R. Menon, A. Patel, D. Chao, M. Walsh, and H. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330-339 (2005).
[CrossRef]

G. Seitz, S. Schulte, U. Dinger, O. Hocky, B. Fellner, and M. Rupp, “EUV microlithography: a challenge for optical metrology,” Proc. SPIE 5533, 20-26 (2004).
[CrossRef]

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-29 (2003).
[CrossRef]

R. Hofling and E. Ahl, “ALP: universal micromirror controller for metrology and testing,” Proc. SPIE 5289, 322-329 (2004).
[CrossRef]

Sens. Actuators A (1)

C. Sun, N. Fang, D. Wu, and X. Zhang, “Projection microstereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113-120 (2005).
[CrossRef]

Other (10)

T. Kanatake, “High resolution point array,” U.S. Patent 6,870,604 B2 (2005).

M. Seo and H. Kim, “Occupancy based pattern generation method for maskless lithography,” Patent KR 10-0655165 (2006), Patent Application Pub. No. US/12/095,037 (2008).

W. Mei, T. Kanatake, and A. Ishikawa, “Moving exposure system and method for maskless lithography system,” U.S. Patent 6,379,867 B1 (2002).

W. Mei, “Point array maskless lithography,” U.S. Patent 6,473,237 B2 (2002).

A. Beeker, W. Cebuhar, J. Kreuzer, A. Latypov, and Y. Vladimirsky, “Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system utilizing overlap of exposure zones with attenuation of the aerial image in the overlap region,” U.S. Patent 6,876,440 B1 (2005).

W. J. Smith, Modern Lens Design, 2nd ed. (McGraw-Hill Professional, New York, USA, 2004), Chapter 12.

Y. Matsui, Lens Sekkeiho (The Method of Lens Design, witten in Japanese), 1st ed. (Kyoritsu Publication Inc., Tokyo, Japan, 1972), pp. 70-75.

T. Kusakawa, Lens Kogaku (Lens optics, witten in Japanese), 1st ed. (Tokai Univ. Press, Tokyo, Japan, 1988), pp. 218-259.

H. A. Buchdahl, Optical Aberration Coefficients, 1st ed. (Dover Publication Inc., New York, USA, 1968).

R. W. Daniels, An Introuction to Numerical Methods and Optimization Techniques, 1st ed. (North-Holland, New York, USA, 1978), Chapter 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.