Abstract

Aerosol size distribution provides good information for predicting weather changes and understanding cloud formation. Aerosol extinction coefficient and backscattering coefficient are measured by many scientists, but these parameters depend not only on aerosol size but on aerosol concentrations. An algorithm has been developed to measure aerosol parameters such as <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent, color ratio, and LIDAR ratio without any assumptions by using two wavelength rotational Raman LIDAR signals. These parameters are good indicators for the aerosol size. And we can find <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent, color ratio, and LIDAR ratio under various weather conditions. Finally, it can be seen that the <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent has an inverse relationship to the particle size of the aerosol and the color ratio is linearly dependent on the aerosol size. An <TEX>${\AA}$</TEX>ngstr<TEX>$\ddot{o}$</TEX>m exponent from 1.2 to 3.1, a color ratio from 0.28 to 1.04, and a LIDAR ratio 66.9 sr at 355 nm and 32.6 sr at 532 nm near the cloud were obtained.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005).
    [CrossRef]
  2. W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009).
    [CrossRef]
  3. P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009).
    [CrossRef]
  4. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie LIDAR measurement of aerosol in atmospheric profiles,” Opt. Lett. 17, 541-543 (1992).
    [CrossRef]
  5. V. Rizi, M. Larlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004).
    [CrossRef]
  6. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter LIDAR,” Appl. Opt. 31, 7113-7131 (1992).
    [CrossRef]
  7. A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929).
    [CrossRef]
  8. D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008).
    [CrossRef]
  9. D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006).
    [CrossRef]
  10. D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficients,” Opt. Lett. 30, 1728-1730 (2005).
    [CrossRef]
  11. D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007).
    [CrossRef]
  12. D. Kim and H. Cha, “Suggestion for qualitative LIDAR identification of different types of aerosol using the two wavelength rotational Raman and elastic LIDAR,” Opt. Lett. 31, 2915-2917 (2006).
    [CrossRef]
  13. H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).
  14. Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007).
    [CrossRef]
  15. A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004).
    [CrossRef]
  16. L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).
  17. A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).

2009

W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009).
[CrossRef]

P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009).
[CrossRef]

2008

D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008).
[CrossRef]

2007

D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007).
[CrossRef]

Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007).
[CrossRef]

2006

D. Kim and H. Cha, “Suggestion for qualitative LIDAR identification of different types of aerosol using the two wavelength rotational Raman and elastic LIDAR,” Opt. Lett. 31, 2915-2917 (2006).
[CrossRef]

D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006).
[CrossRef]

2005

D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficients,” Opt. Lett. 30, 1728-1730 (2005).
[CrossRef]

K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005).
[CrossRef]

A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).

2004

A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004).
[CrossRef]

V. Rizi, M. Larlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004).
[CrossRef]

1992

1929

A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929).
[CrossRef]

1912

H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).

1904

L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).

Appl. Opt.

Appl. Phys. B

D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006).
[CrossRef]

Atmos. Chem. Phys. Discuss.

P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009).
[CrossRef]

Atmos. Environ.

K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005).
[CrossRef]

Atmos. Res.

Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007).
[CrossRef]

Geogr. Ann.

A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929).
[CrossRef]

IEEE Intern. Geo. Rem. Sens.

A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004).
[CrossRef]

Int. J. Environment and Pollution

W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009).
[CrossRef]

J. Korean Phys. Soc.

D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007).
[CrossRef]

Meteorol. Atmos. Phys.

D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008).
[CrossRef]

Opt. Lett.

Springer

A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).

Verh. III. Intern. Math. Kongr. Heidelberg

L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).

Z. Ver. Dtsch. Ing.

H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.