Abstract

The Raman shift of water vapor is 3657 <TEX>$cm^{-1}$</TEX>, and this Raman signal can be easily separated from other Raman signals or elastic signals. However, it is difficult to make simultaneous Raman measurements on the three phases of water, namely, ice water, liquid water, and water vapor. This is because we must consider the overlap between their Raman spectra. Therefore, very few groups have attempted to make Raman simultaneous measurements even on two elements (water vapor and liquid water, or water vapor and ice water). We have made an effort to find three characteristic Raman wavelengths that correspond to the three phases of water after measuring full Raman spectra of water on particular days that are rainy, snowy or clear. Finally, we have found that the 401-nm, 404-nm, and 408-nm wavelengths are the most characteristic Raman wavelengths that are representative of the water phases when we are using the 355-nm laser wavelength for making measurements.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. V. Ramaswamy and S. M. Freidenriech, “Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres,” J. Geophys. Res. 96, 9133-9157 (1991).
    [CrossRef]
  2. J. A. Weinman, “Monte Carlo analysis of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763-1771 (1976).
    [CrossRef]
  3. S. T. Shipley and D. H. Tracy, “High spectral resolution LIDAR to measure optical scattering properties of atmospheric aerosols 1: theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
    [CrossRef]
  4. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution LIDAR to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt. 22, 3725-3732 (1983).
    [CrossRef]
  5. J. R. Scherer, M. K. Go, and S. Kint, “The vibrational spectroscopy of water,” J. Phys. Chem. 78, 1304-1313 (1974).
    [CrossRef]
  6. G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114-126 (1967).
    [CrossRef]
  7. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770-1778 (1991).
    [CrossRef]
  8. S. H. Melfi, “Observation of atmospheric fronts using Raman LIDAR moisture measurements,” J. Appl. Meteor. 28, 789-806 (1989).
    [CrossRef]
  9. S. H. Melfi, J. D. Lawrence Jr., and M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295-297 (1963).
    [CrossRef]
  10. J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteor. 11, 108-112 (1972).
    [CrossRef]
  11. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551-3559 (1997).
    [CrossRef]
  12. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization LIDAR,” Appl. Phys. B 73, 739-744 (2001).
    [CrossRef]
  13. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004).
    [CrossRef]
  14. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitlamp, E. Voss, and W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18-28 (1992).
    [CrossRef]
  15. M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, and Y. T. Lee, “Infrared vibrational predissociation spectroscopy of water clusters by the crossed laser molecular beam technique,” J. Chem. Phys. 77, 47-57 (1982).
    [CrossRef]
  16. G. D. A’arrigo, G. Maisano, F. Mallamace, P. Migliadrdo, and F. Wanderingh, “Raman scattering and structure of normal and supercooled water,” J. Chem. Phys. 75, 4264-4270 (1981).
    [CrossRef]
  17. N. P. Andreeva, A. F. Bunkin, and S. M. Persin, “Deformation of the Raman scattering spectrum of ice under local laser heating near 0 degree,” Optics and Spectroscopy 93, 252-256 (2002).
    [CrossRef]
  18. D. Kim, I. Song, H. D. Cheong, Y. Kim, S. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman LIDAR signals and principal component analysis,” Opt. Rev. 17, 84-89 (2010).
    [CrossRef]
  19. D. H. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614-2615 (1999).
    [CrossRef]

2010

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman LIDAR signals and principal component analysis,” Opt. Rev. 17, 84-89 (2010).
[CrossRef]

2004

2002

N. P. Andreeva, A. F. Bunkin, and S. M. Persin, “Deformation of the Raman scattering spectrum of ice under local laser heating near 0 degree,” Optics and Spectroscopy 93, 252-256 (2002).
[CrossRef]

2001

I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization LIDAR,” Appl. Phys. B 73, 739-744 (2001).
[CrossRef]

1999

1997

1992

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitlamp, E. Voss, and W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18-28 (1992).
[CrossRef]

1991

V. Ramaswamy and S. M. Freidenriech, “Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres,” J. Geophys. Res. 96, 9133-9157 (1991).
[CrossRef]

G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770-1778 (1991).
[CrossRef]

1989

S. H. Melfi, “Observation of atmospheric fronts using Raman LIDAR moisture measurements,” J. Appl. Meteor. 28, 789-806 (1989).
[CrossRef]

1983

1982

M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, and Y. T. Lee, “Infrared vibrational predissociation spectroscopy of water clusters by the crossed laser molecular beam technique,” J. Chem. Phys. 77, 47-57 (1982).
[CrossRef]

1981

G. D. A’arrigo, G. Maisano, F. Mallamace, P. Migliadrdo, and F. Wanderingh, “Raman scattering and structure of normal and supercooled water,” J. Chem. Phys. 75, 4264-4270 (1981).
[CrossRef]

1976

J. A. Weinman, “Monte Carlo analysis of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763-1771 (1976).
[CrossRef]

1974

J. R. Scherer, M. K. Go, and S. Kint, “The vibrational spectroscopy of water,” J. Phys. Chem. 78, 1304-1313 (1974).
[CrossRef]

1972

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteor. 11, 108-112 (1972).
[CrossRef]

1967

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114-126 (1967).
[CrossRef]

1963

S. H. Melfi, J. D. Lawrence Jr., and M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295-297 (1963).
[CrossRef]

Appl. Opt.

Appl. Phys. B

I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, and J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization LIDAR,” Appl. Phys. B 73, 739-744 (2001).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitlamp, E. Voss, and W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18-28 (1992).
[CrossRef]

Appl. Phys. Lett.

S. H. Melfi, J. D. Lawrence Jr., and M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295-297 (1963).
[CrossRef]

J. Appl. Meteor.

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteor. 11, 108-112 (1972).
[CrossRef]

S. H. Melfi, “Observation of atmospheric fronts using Raman LIDAR moisture measurements,” J. Appl. Meteor. 28, 789-806 (1989).
[CrossRef]

J. Atmos. Sci.

J. A. Weinman, “Monte Carlo analysis of multiple scattering on light pulses reflected by turbid atmospheres,” J. Atmos. Sci. 33, 1763-1771 (1976).
[CrossRef]

J. Chem. Phys.

G. E. Walrafen, “Raman spectral studies of the effects of temperature on water structure,” J. Chem. Phys. 47, 114-126 (1967).
[CrossRef]

M. F. Vernon, D. J. Krajnovich, H. S. Kwok, J. M. Lisy, Y. R. Shen, and Y. T. Lee, “Infrared vibrational predissociation spectroscopy of water clusters by the crossed laser molecular beam technique,” J. Chem. Phys. 77, 47-57 (1982).
[CrossRef]

G. D. A’arrigo, G. Maisano, F. Mallamace, P. Migliadrdo, and F. Wanderingh, “Raman scattering and structure of normal and supercooled water,” J. Chem. Phys. 75, 4264-4270 (1981).
[CrossRef]

J. Geophys. Res.

V. Ramaswamy and S. M. Freidenriech, “Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres,” J. Geophys. Res. 96, 9133-9157 (1991).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

J. R. Scherer, M. K. Go, and S. Kint, “The vibrational spectroscopy of water,” J. Phys. Chem. 78, 1304-1313 (1974).
[CrossRef]

Opt. Rev.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman LIDAR signals and principal component analysis,” Opt. Rev. 17, 84-89 (2010).
[CrossRef]

Optics and Spectroscopy

N. P. Andreeva, A. F. Bunkin, and S. M. Persin, “Deformation of the Raman scattering spectrum of ice under local laser heating near 0 degree,” Optics and Spectroscopy 93, 252-256 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.