Abstract

In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef]
  2. E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008).
    [CrossRef]
  3. J. H. Kim and B. H. Lee, “Murine heart wall imaging with optical coherence tomography,” J. Opt. Soc. Korea 10, 42-47 (2006).
    [CrossRef]
  4. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 <TEX>${\mu}m$</TEX> using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998).
    [CrossRef]
  5. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 <TEX>${\mu}m$</TEX>,” Opt. Lett. 29, 2846-2848 (2004).
    [CrossRef]
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005).
    [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]
  8. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003).
  9. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22, 1492-1499 (2005).
    [CrossRef]
  10. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006).
    [CrossRef]
  11. M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000).
    [CrossRef]
  12. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuouswave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef]
  13. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005).
    [CrossRef]
  14. A. K. Abeeluck, C. Headley, and C. G. Jorgensen, “Highpower supercontinuum generation in highly nonlinear dispersion- shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef]
  15. J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuouswave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber,” Opt. Lett. 30, 2599-2602 (2005).
    [CrossRef]
  16. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004).
    [CrossRef]
  17. J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006).
    [CrossRef]
  18. A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004).
    [CrossRef]
  19. P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 <TEX>${\mu}m$</TEX> multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
    [CrossRef]
  20. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004).
    [CrossRef]
  21. C. S. Kim and J. U. Kang, “Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter,” Appl. Opt. 43, 3151-3157 (2004).
    [CrossRef]
  22. J. H. Lee, Y.-M. Chang, Y.-G. Han, S. B. Lee, and H. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous wave, incoherent supercontinuum source,” Appl. Opt. 46, 5158-5167 (2007).
    [CrossRef]
  23. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).
  24. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 <TEX>${\mu}m$</TEX>,” Opt. Lett. 29, 2846-2848 (2004).
    [CrossRef]
  25. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005).
    [CrossRef]
  26. A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004).
    [CrossRef]
  27. U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 <TEX>${\mu}m$</TEX> for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008).
    [CrossRef]
  28. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278-1285 (1995).
    [CrossRef]
  29. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007).
    [CrossRef]
  30. J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).
  31. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001).
    [CrossRef]
  32. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001).
    [CrossRef]
  33. H. S. Lee, E. J. Jung, M. Y. Jeong, and C. S. Kim, “Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT,” J. Opt. Soc. Korea 13, 316-320 (2009).
    [CrossRef]
  34. D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009).
    [CrossRef]
  35. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.
  36. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998).
    [CrossRef]
  37. S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009).
    [CrossRef]

2009 (3)

D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009).
[CrossRef]

S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009).
[CrossRef]

H. S. Lee, E. J. Jung, M. Y. Jeong, and C. S. Kim, “Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT,” J. Opt. Soc. Korea 13, 316-320 (2009).
[CrossRef]

2008 (2)

E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008).
[CrossRef]

U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 <TEX>${\mu}m$</TEX> for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008).
[CrossRef]

2007 (3)

S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007).
[CrossRef]

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).

J. H. Lee, Y.-M. Chang, Y.-G. Han, S. B. Lee, and H. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous wave, incoherent supercontinuum source,” Appl. Opt. 46, 5158-5167 (2007).
[CrossRef]

2006 (4)

J. H. Kim and B. H. Lee, “Murine heart wall imaging with optical coherence tomography,” J. Opt. Soc. Korea 10, 42-47 (2006).
[CrossRef]

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.

J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006).
[CrossRef]

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006).
[CrossRef]

2005 (5)

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005).
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005).
[CrossRef]

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005).
[CrossRef]

Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, “Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography,” J. Opt. Soc. Am. A 22, 1492-1499 (2005).
[CrossRef]

J. H. Lee, Y. Takushima, and K. Kikuchi, “Continuouswave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber,” Opt. Lett. 30, 2599-2602 (2005).
[CrossRef]

2004 (9)

C. S. Kim and J. U. Kang, “Multi-wavelength switching of Raman fiber ring laser incorporating composite PMF Lyot-Sagnac filter,” Appl. Opt. 43, 3151-3157 (2004).
[CrossRef]

A. K. Abeeluck, C. Headley, and C. G. Jorgensen, “Highpower supercontinuum generation in highly nonlinear dispersion- shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163-2165 (2004).
[CrossRef]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 <TEX>${\mu}m$</TEX>,” Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 <TEX>${\mu}m$</TEX>,” Opt. Lett. 29, 2846-2848 (2004).
[CrossRef]

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004).
[CrossRef]

A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 <TEX>${\mu}m$</TEX> multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
[CrossRef]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004).
[CrossRef]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

2003 (3)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003).

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuouswave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353-1355 (2003).
[CrossRef]

2001 (2)

C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001).
[CrossRef]

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001).
[CrossRef]

2000 (1)

M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

1998 (3)

E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 <TEX>${\mu}m$</TEX> using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998).
[CrossRef]

J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).

F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998).
[CrossRef]

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. K. Abeeluck and C. Headley, “Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode,” Appl. Phys. Lett. 85, 4863-4865 (2004).
[CrossRef]

C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave pumped continumm generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706-2708 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (3)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” IEEE J. Lightwave Technol. 23, 13-18 (2005).
[CrossRef]

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength division multiplexed passive optical network architecture with C-band OLT, L-band ONU, and U-band monitoring,” IEEE J. Lightwave Technol. 26, 2891-2897 (2007).

C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” IEEE J. Lightwave Technol. 19, 1140-1148 (2001).
[CrossRef]

IEEE J. Select. Topics Quantum Electron (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Select. Topics Quantum Electron. 7, 328-333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. A. Champert, V. Couderc, and A. Barthelemy, “1.5-2.0 <TEX>${\mu}m$</TEX> multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

J. S. Lee, C. H. Chung, and D. J. Digiovanni, “Spectrumsliced fiber amplifier light source for multi-channel WDM application,” IEEE. Photon. Technol. Lett. 5, 1458-1461 (1998).

J. Biomed. Opt. (3)

D. D. D. Fonseca, B. B. C. Kyoyoku, A. M. A. Maia, and A. S. L. Gomes, “In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm,” J. Biomed. Opt. 14, 024009-1~024009-5 (2009).
[CrossRef]

S. S. Manesh, C. L. Darling, and D. Fried, “Polarizationsensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14, 044002-1~044002-6 (2009).
[CrossRef]

E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 <TEX>${\mu}m$</TEX> using Er and Tm-doped fiber sources,” J. Biomed. Opt. 3, 76-79 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (2)

Jpn. J. Appl. Phys. (1)

M. Prabhu, N. S. Kim, and K. Ueda, “Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,” Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density light source for fiber sensing purposes,” Meas. Sci. Technol. 17, 1014-1019 (2006).
[CrossRef]

Opt. Exp. (8)

J. H. Lee, Y.-G. Han, and S. B. Lee, “Experimental study on seed light source coherence dependence of continuouswave supercontinuum performance,” Opt. Exp. 14, 3443-3452 (2006).
[CrossRef]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Exp. 12, 5287-5295 (2004).
[CrossRef]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Exp. 13, 6912-6918 (2005).
[CrossRef]

S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. Wadsworth, U. Bunting, and D. Kopf, “Ultrahigh resolution real time OCT imaging using a compat femtosecond Nd:Glass laser and nonlinear fiber,” Opt. Exp. 11, 3290-3297 (2003).

E. J. Jung, J. S. Park, M. Y. Jeong, C. S. Kim, T. J. Eom, B. A. Yu, S. Gee, J. Lee, and M. K. Kim, “Spectrallysampled OCT for sensitivity improvement from limited optical power,” Opt. Exp. 16, 17457-17467 (2008).
[CrossRef]

F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, and D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Exp. 3, 239-250 (1998).
[CrossRef]

U. Sharma, E. W. Chang, and S. H. Yun, “Long wavelength optical coherence tomography at 1.7 <TEX>${\mu}m$</TEX> for enhanced imaging depth,” Opt. Exp. 16, 19712-19723 (2008).
[CrossRef]

S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Exp. 15, 15129-15146 (2007).
[CrossRef]

Opt. Lett. (5)

Phys. Med. Biol. (1)

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Proc. Biomedical Optics Topical Meeting (BIOMED) (1)

V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, M. Yamanari, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, “In-vivo three dimensional Fourier-domain optical coherence tomography for soft and hard oral tissue measurements,” in Proc. Biomedical Optics Topical Meeting (BIOMED) (Fort Lauderdale, FL, USA, Mar. 2006), paper WE3.

Proc. SPIE (1)

D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE 5690, 101-113 (2005).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.