Abstract

This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than <TEX>$3\;{\mu}m$</TEX>. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

© 2010 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).
  2. R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).
  3. B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).
  4. M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009).
    [CrossRef]
  5. A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006).
    [CrossRef]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004).
    [CrossRef]
  7. S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998).
    [CrossRef]
  8. F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008).
    [CrossRef]
  9. N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004).
    [CrossRef]
  10. G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007).
    [CrossRef]
  11. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).
  12. G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
    [CrossRef]
  13. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  14. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999).
    [CrossRef]
  15. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
    [CrossRef]
  16. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  17. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003).
    [CrossRef]
  18. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).
  19. J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).
  20. B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)
  21. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O"Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004).
    [CrossRef]
  22. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002).
    [CrossRef]
  23. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
    [CrossRef]
  24. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003).
  25. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef]
  26. S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).
  27. J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003).
  28. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000).
    [CrossRef]
  29. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett"s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000).
    [CrossRef]
  30. I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  31. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002).
    [CrossRef]
  32. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997).
    [CrossRef]
  33. Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.
  34. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003).
    [CrossRef]
  35. M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).
  36. R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.
  37. P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004).
    [CrossRef]
  38. X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008).
    [CrossRef]
  39. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005).
    [CrossRef]
  40. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006).
    [CrossRef]
  41. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009).
    [CrossRef]
  42. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
    [CrossRef]
  43. X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008).
    [CrossRef]
  44. S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).
  45. J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4.
    [CrossRef]
  46. K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.
  47. K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009).
    [CrossRef]
  48. M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009).
    [CrossRef]
  49. V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).
  50. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003).
    [CrossRef]
  51. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005).
    [CrossRef]
  52. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008).
    [CrossRef]
  53. http://omlc.ogi.edu/spectra/index.html.
  54. K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).
  55. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  56. S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.
  57. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008).
    [CrossRef]
  58. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
    [CrossRef]
  59. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005).
    [CrossRef]
  60. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005).
    [CrossRef]
  61. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008).
    [CrossRef]
  62. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008).
    [CrossRef]
  63. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006).
    [CrossRef]
  64. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007).
    [CrossRef]
  65. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).
    [CrossRef]
  66. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005).
    [CrossRef]
  67. J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009).
    [CrossRef]

2010 (2)

M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).

J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4.
[CrossRef]

2009 (8)

K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009).
[CrossRef]

M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009).
[CrossRef]

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009).
[CrossRef]

J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009).
[CrossRef]

S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).

M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009).
[CrossRef]

S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).

2008 (11)

R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).

F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008).
[CrossRef]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).

S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008).
[CrossRef]

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008).
[CrossRef]

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008).
[CrossRef]

X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008).
[CrossRef]

S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).

X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008).
[CrossRef]

C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008).
[CrossRef]

2007 (3)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007).
[CrossRef]

G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007).
[CrossRef]

2006 (5)

A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006).
[CrossRef]

J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006).
[CrossRef]

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006).
[CrossRef]

2005 (5)

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005).
[CrossRef]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005).
[CrossRef]

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005).
[CrossRef]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005).
[CrossRef]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005).
[CrossRef]

2004 (5)

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004).
[CrossRef]

N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004).
[CrossRef]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O"Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.

2003 (6)

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
[CrossRef]

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003).

J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003).

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003).
[CrossRef]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003).
[CrossRef]

A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003).
[CrossRef]

2002 (5)

V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef]

B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002).
[CrossRef]

R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.

2001 (2)

I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
[CrossRef]

B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).

2000 (5)

J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000).
[CrossRef]

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett"s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000).
[CrossRef]

K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000).
[CrossRef]

1999 (3)

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

1998 (1)

S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998).
[CrossRef]

1997 (2)

G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997).
[CrossRef]

1994 (2)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).

1992 (1)

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

Appl. Opt (1)

X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B : Lasers and Optics (1)

J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4.
[CrossRef]

Appl. Phys. Lett (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

Arch. Opthalmol (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).

Chin. Opt. Lett (1)

X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008).
[CrossRef]

Curr. Opin. Ophthalmol (1)

S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).

Electron. Lett (1)

J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009).
[CrossRef]

Endoscopy (2)

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000).
[CrossRef]

S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett"s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000).
[CrossRef]

IEEE J. Select. Topical Quantum Electron (2)

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009).
[CrossRef]

Indian J. Anaesh (1)

V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).

J. Biomed. Opt (1)

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005).
[CrossRef]

J. Microscopy (1)

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008).
[CrossRef]

J. Neurosci. Methods (1)

M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009).
[CrossRef]

Lasers Surg. Med. (1)

R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002).
[CrossRef]

Lecture Notes in Computer Science (1)

M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007).
[CrossRef]

Nano Lett (1)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O"Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004).
[CrossRef]

Nat. Clin. Pract. Cardiovasc. Med. (1)

A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006).
[CrossRef]

Nature Biotech (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003).
[CrossRef]

Neurosurgery (1)

S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998).
[CrossRef]

Ophthalmology (1)

F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008).
[CrossRef]

Opt. Exp (4)

N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004).
[CrossRef]

G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004).
[CrossRef]

A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006).
[CrossRef]

Opt. Exp. (5)

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009).
[CrossRef]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997).
[CrossRef]

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006).
[CrossRef]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005).
[CrossRef]

Opt. Lett (13)

J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).
[CrossRef]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005).
[CrossRef]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003).
[CrossRef]

D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005).
[CrossRef]

C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000).
[CrossRef]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008).
[CrossRef]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).
[CrossRef]

I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
[CrossRef]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002).
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef]

Proc. Conference on Lasers and Electro-Optics (CLEO) (2)

K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.

Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.

Proc. International Conference on Robotics and Automation (ICRA) (1)

S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.

Proc. Intl. Sot. Mag. Reson. Med (1)

K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).

Proc. SPIE (4)

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004).
[CrossRef]

S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).

M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).

J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).

Proc. The 15th Optical Fiber Sensors Conference Technical Digest (1)

R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.

Rev. Sci. Instrum (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Science (1)

G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).
[CrossRef]

Technol. Cancer Res. Treat (2)

K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003).

J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003).

Other (6)

B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)

S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).

R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).

B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).

http://omlc.ogi.edu/spectra/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.