Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 13,
  • Issue 3,
  • pp. 354-360
  • (2009)

Transmission Performance of 40 Gb/s PM Duobinary Signals due to Fiber Nonlinearities in DWDM Systems Using VSB Filtering Techniques

Open Access Open Access

Abstract

We investigate theoretically the tolerance of 40 Gbps phase-modulated (PM) duobinary signals using a vestigial sideband (VSB) filter on impairments which occurred in dense wavelength-division multiplexing (DWDM) systems, compared to the conventional duobinary signals. Our simulation results show that PM duobinary signals can't have the gain on the spectral efficiency achieved by utilizing the VSB filtering technique. In order to increase the spectral efficiency, they indispensably require to be transmitted at the optimum bandwidth of multiplexer (MUX) and demultiplexer (DEMUX) since they are susceptible to inter-channel crosstalk. It is also shown that the PM duobinary modulation format has a large tolerance on self-phase modulation (SPM) and cross-phase modulation (XPM) under the condition which MUX and DEMUX have been tuned at an optimum bandwidth; it has 1.2 dB power penalty at the fiber launching power (FLP) of 15 dBm and the channel spacing of 50 GHz.

© 2009 Optical Society of Korea

PDF Article
More Like This
Experimental performance comparison of Duobinary and PSBT modulation formats for long-haul 40 Gb/s transmission on G 0.652 fibre

Erwan Pincemin, Christophe Gosset, Nassima Boudrioua, Antoine Tan, Didier Grot, and Thierry Guillossou
Opt. Express 20(27) 28171-28190 (2012)

28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON

Zhengxuan Li, Lilin Yi, Xiaodong Wang, and Weisheng Hu
Opt. Express 23(16) 20249-20256 (2015)

10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals

John D. Downie, Jason Hurley, and Yihong Mauro
Opt. Express 16(20) 15759-15764 (2008)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.