Abstract

We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.

© 2008 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. K.-Y. Lee, S.-H. Jeung, D.-D. Do, N. Kim, J.-W. An, “Holographic Demultiplexer with Low Polarization Dependence Loss using Photopolymer Diffraction Gratings,” J. Opt. Soc. Korea, vol. 11, no. 2, pp. 51-54, 2007
  2. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional reali-stic objects recorded without wave interference,” Appl. Opt., vol. 40, no. 17, pp. 2864-2870, 2001
    [CrossRef]
  3. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Exp., vol. 15, no. 20, pp. 13250-13255, 2007
    [CrossRef]
  4. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Exp., vol. 16, no. 12, pp. 8800-8813, 2008
    [CrossRef]
  5. Y. Sando, M. Itoh, and T. Yatagai, “Holographic threedimensional display synthesized from three-dimensional Fourier spectra of real existing objects,” Opt. Lett., vol. 28, no. 24, pp. 2518-2520, 2003
  6. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A, vol. 20, no. 8, pp. 1537-1545, 2003
    [CrossRef]
  7. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Exp., vol. 15, no. 9, pp. 5754-5760, 2007
    [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 104-105
  9. D.-H. Shin and E.-S. Kim, “Computational Integral Imaging Reconstruction of 3D Object Using a Depth Conversion Technique,” J. Opt. Soc. Korea, vol. 12, no. 3, pp. 131-135, 2008
  10. J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE, vol. 55, no. 4, pp. 599-600, 1967

2008 (2)

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Exp., vol. 16, no. 12, pp. 8800-8813, 2008
[CrossRef]

D.-H. Shin and E.-S. Kim, “Computational Integral Imaging Reconstruction of 3D Object Using a Depth Conversion Technique,” J. Opt. Soc. Korea, vol. 12, no. 3, pp. 131-135, 2008

2007 (3)

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Exp., vol. 15, no. 9, pp. 5754-5760, 2007
[CrossRef]

K.-Y. Lee, S.-H. Jeung, D.-D. Do, N. Kim, J.-W. An, “Holographic Demultiplexer with Low Polarization Dependence Loss using Photopolymer Diffraction Gratings,” J. Opt. Soc. Korea, vol. 11, no. 2, pp. 51-54, 2007

B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Exp., vol. 15, no. 20, pp. 13250-13255, 2007
[CrossRef]

2003 (2)

Y. Sando, M. Itoh, and T. Yatagai, “Holographic threedimensional display synthesized from three-dimensional Fourier spectra of real existing objects,” Opt. Lett., vol. 28, no. 24, pp. 2518-2520, 2003

D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A, vol. 20, no. 8, pp. 1537-1545, 2003
[CrossRef]

2001 (1)

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional reali-stic objects recorded without wave interference,” Appl. Opt., vol. 40, no. 17, pp. 2864-2870, 2001
[CrossRef]

1996 (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 104-105

1967 (1)

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE, vol. 55, no. 4, pp. 599-600, 1967

Applied Optics (1)

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional reali-stic objects recorded without wave interference,” Appl. Opt., vol. 40, no. 17, pp. 2864-2870, 2001
[CrossRef]

JOSA A (1)

D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A, vol. 20, no. 8, pp. 1537-1545, 2003
[CrossRef]

Journal of the Optical Society of Korea (2)

D.-H. Shin and E.-S. Kim, “Computational Integral Imaging Reconstruction of 3D Object Using a Depth Conversion Technique,” J. Opt. Soc. Korea, vol. 12, no. 3, pp. 131-135, 2008

K.-Y. Lee, S.-H. Jeung, D.-D. Do, N. Kim, J.-W. An, “Holographic Demultiplexer with Low Polarization Dependence Loss using Photopolymer Diffraction Gratings,” J. Opt. Soc. Korea, vol. 11, no. 2, pp. 51-54, 2007

Optics Express (3)

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Exp., vol. 15, no. 9, pp. 5754-5760, 2007
[CrossRef]

B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Exp., vol. 15, no. 20, pp. 13250-13255, 2007
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Exp., vol. 16, no. 12, pp. 8800-8813, 2008
[CrossRef]

Optics Letters (1)

Y. Sando, M. Itoh, and T. Yatagai, “Holographic threedimensional display synthesized from three-dimensional Fourier spectra of real existing objects,” Opt. Lett., vol. 28, no. 24, pp. 2518-2520, 2003

Proc. IEEE (1)

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE, vol. 55, no. 4, pp. 599-600, 1967

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 104-105

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.