Abstract

We have evaluated the performance of strain-chirped fiber Bragg grating (FBG) based tunable dispersion compensator in a 40 Gb/s transmission link. In our proposed compensator, the value of dispersion could be changed from -353 ps/nm to -962 ps/nm by adjusting the rotation angle of the metal beam on which the FBG was mounted. In order to evaluate the effect of ripples in reflectivity and variations in passband of the FBG based dispersion compensator, transmission performance has been measured with our tunable dispersion compensator. Error-free transmission of a 40 Gb/s non-return-to-zero (NRZ) signal over conventional single-mode fiber (SMF) was achieved.

© 2008 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. G.-Y. Kim, S.-J. Park, and K.-T. Jeong, “Comparison with dispersion compensation scheme using 10 Gbit/s <TEX>${\times}$</TEX> 40 Channels wavelength division multiplexing transmission over 323 km of field installed non-zero dispersion shift fiber,” J. Opt. Soc. Korea, vol. 10, no. 3, pp. 112-117, Sep. 2006
  2. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett, vol. 15, no. 5, pp. 730-732, May 2003
    [CrossRef]
  3. T. Suzuki, K. Masuda, H. Tsuda, R. Inohara, H. Takahashi, H. Ishikawa, Y. Abe, S. Kashimura, and H. Uetsuka, “Dispersion compensation experiments of 40 Gbit/s NRZ signal using arrayed-waveguide grating based dispersion compensator,” in Proc. European Conference on Optical Communication (ECOC2005), Paper Th.1.5.1, Galsgow UK, Sep. 2005
  4. C. R. Doerr, S. Chandrasekhar, and L. L. Buhl, “Tunable optical compensator with increased bandwidth via connection of a Mach-Zehnder interferometer to an arrayedwaveguide grating,” IEEE Photon. Technol. Lett, vol. 20, no. 8, pp.560-562, Apr. 2008
    [CrossRef]
  5. J. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion slope compensator using a planar lightwave circuit lattice form filter,” Opt. Lett., vol. 33, no. 11, pp. 1243-1245, Jun. 2008
    [CrossRef]
  6. C. S. Goh, S. Y. Set, and K. Kikuchi, “Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett, vol.16, no. 2, pp.524-526, Feb. 2004
    [CrossRef]
  7. J. Kwon and B. Lee, “Dispersion tuning of a chirped fiber Bragg grating using a multisectional bending structure,” IEEE Photon. Technol. Lett, vol. 17, no. 2, pp. 408-410, Feb. 2005
    [CrossRef]
  8. Y. J. Lee, J. Bae, K. Lee, J.-M. Jeong, and S. B. Lee, “Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating,” IEEE Photon. Technol. Lett, vol. 19, no. 10, pp. 762-764, May 2007
    [CrossRef]
  9. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laing, “Influence of nonideal chirped fiber Bragg grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett, vol. 10, no. 10, pp. 1476-1478, Oct. 1998
    [CrossRef]
  10. N. Cheng and C. Cartledge, “Power penalty due to the amplitude and phase response ripple of a dispersion compensating fiber Bragg grating for chirped optical signals,” J. Lightwave Tech., vol. 24, no. 9, pp. 3363-3369, Sep. 2006
    [CrossRef]
  11. A. E. Willner, “SNR analysis of crosstalk and filtering effects in an amplified multichannel direct-detection dense-WDM system,” IEEE Photon. Technol. Lett, vol. 4, no. 2, pp. 186-189, Feb. 1992
    [CrossRef]

2008 (2)

C. R. Doerr, S. Chandrasekhar, and L. L. Buhl, “Tunable optical compensator with increased bandwidth via connection of a Mach-Zehnder interferometer to an arrayedwaveguide grating,” IEEE Photon. Technol. Lett, vol. 20, no. 8, pp.560-562, Apr. 2008
[CrossRef]

J. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion slope compensator using a planar lightwave circuit lattice form filter,” Opt. Lett., vol. 33, no. 11, pp. 1243-1245, Jun. 2008
[CrossRef]

2007 (1)

Y. J. Lee, J. Bae, K. Lee, J.-M. Jeong, and S. B. Lee, “Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating,” IEEE Photon. Technol. Lett, vol. 19, no. 10, pp. 762-764, May 2007
[CrossRef]

2006 (2)

G.-Y. Kim, S.-J. Park, and K.-T. Jeong, “Comparison with dispersion compensation scheme using 10 Gbit/s <TEX>${\times}$</TEX> 40 Channels wavelength division multiplexing transmission over 323 km of field installed non-zero dispersion shift fiber,” J. Opt. Soc. Korea, vol. 10, no. 3, pp. 112-117, Sep. 2006

N. Cheng and C. Cartledge, “Power penalty due to the amplitude and phase response ripple of a dispersion compensating fiber Bragg grating for chirped optical signals,” J. Lightwave Tech., vol. 24, no. 9, pp. 3363-3369, Sep. 2006
[CrossRef]

2005 (2)

T. Suzuki, K. Masuda, H. Tsuda, R. Inohara, H. Takahashi, H. Ishikawa, Y. Abe, S. Kashimura, and H. Uetsuka, “Dispersion compensation experiments of 40 Gbit/s NRZ signal using arrayed-waveguide grating based dispersion compensator,” in Proc. European Conference on Optical Communication (ECOC2005), Paper Th.1.5.1, Galsgow UK, Sep. 2005

J. Kwon and B. Lee, “Dispersion tuning of a chirped fiber Bragg grating using a multisectional bending structure,” IEEE Photon. Technol. Lett, vol. 17, no. 2, pp. 408-410, Feb. 2005
[CrossRef]

2004 (1)

C. S. Goh, S. Y. Set, and K. Kikuchi, “Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett, vol.16, no. 2, pp.524-526, Feb. 2004
[CrossRef]

2003 (1)

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett, vol. 15, no. 5, pp. 730-732, May 2003
[CrossRef]

1998 (1)

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laing, “Influence of nonideal chirped fiber Bragg grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett, vol. 10, no. 10, pp. 1476-1478, Oct. 1998
[CrossRef]

1992 (1)

A. E. Willner, “SNR analysis of crosstalk and filtering effects in an amplified multichannel direct-detection dense-WDM system,” IEEE Photon. Technol. Lett, vol. 4, no. 2, pp. 186-189, Feb. 1992
[CrossRef]

in Proc. European Conference on Optical Communication (ECOC2005) (1)

T. Suzuki, K. Masuda, H. Tsuda, R. Inohara, H. Takahashi, H. Ishikawa, Y. Abe, S. Kashimura, and H. Uetsuka, “Dispersion compensation experiments of 40 Gbit/s NRZ signal using arrayed-waveguide grating based dispersion compensator,” in Proc. European Conference on Optical Communication (ECOC2005), Paper Th.1.5.1, Galsgow UK, Sep. 2005

Journal of the Optical Society of Korea (1)

G.-Y. Kim, S.-J. Park, and K.-T. Jeong, “Comparison with dispersion compensation scheme using 10 Gbit/s <TEX>${\times}$</TEX> 40 Channels wavelength division multiplexing transmission over 323 km of field installed non-zero dispersion shift fiber,” J. Opt. Soc. Korea, vol. 10, no. 3, pp. 112-117, Sep. 2006

Lightwave Technology, Journal of (1)

N. Cheng and C. Cartledge, “Power penalty due to the amplitude and phase response ripple of a dispersion compensating fiber Bragg grating for chirped optical signals,” J. Lightwave Tech., vol. 24, no. 9, pp. 3363-3369, Sep. 2006
[CrossRef]

Optics Letters (1)

J. Takiguchi, H. Takahashi, and T. Shibata, “Tunable chromatic dispersion slope compensator using a planar lightwave circuit lattice form filter,” Opt. Lett., vol. 33, no. 11, pp. 1243-1245, Jun. 2008
[CrossRef]

Photonics Technology Letters, IEEE (7)

C. S. Goh, S. Y. Set, and K. Kikuchi, “Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett, vol.16, no. 2, pp.524-526, Feb. 2004
[CrossRef]

J. Kwon and B. Lee, “Dispersion tuning of a chirped fiber Bragg grating using a multisectional bending structure,” IEEE Photon. Technol. Lett, vol. 17, no. 2, pp. 408-410, Feb. 2005
[CrossRef]

Y. J. Lee, J. Bae, K. Lee, J.-M. Jeong, and S. B. Lee, “Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating,” IEEE Photon. Technol. Lett, vol. 19, no. 10, pp. 762-764, May 2007
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laing, “Influence of nonideal chirped fiber Bragg grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett, vol. 10, no. 10, pp. 1476-1478, Oct. 1998
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett, vol. 15, no. 5, pp. 730-732, May 2003
[CrossRef]

C. R. Doerr, S. Chandrasekhar, and L. L. Buhl, “Tunable optical compensator with increased bandwidth via connection of a Mach-Zehnder interferometer to an arrayedwaveguide grating,” IEEE Photon. Technol. Lett, vol. 20, no. 8, pp.560-562, Apr. 2008
[CrossRef]

A. E. Willner, “SNR analysis of crosstalk and filtering effects in an amplified multichannel direct-detection dense-WDM system,” IEEE Photon. Technol. Lett, vol. 4, no. 2, pp. 186-189, Feb. 1992
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.