Abstract

We investigate the efficiency of an optical intensity modulator based on an electrically tunable <TEX>$LiNbO_3$</TEX> reflection grating. Assuming a grating coupling coefficient and the waveguide propagation loss, waveguide length is varied to find its effect on the modulator slope efficiency and the device capacitance. With the low propagation loss of the <TEX>$LiNbO_3$</TEX> waveguide, a very efficient optical intensity modulator can be achieved for a low frequency (<TEX>${\sim}1GHz$</TEX>) as long as the requirement for the grating coupling coefficient is satisfied.

© 2007 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. See, for example, E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA), 2002
  2. H. Kogelnik and C. V. Shank, "Stimulated emission in a periodic structure," Appl. Phys. Lett., vol. 18, no. 4, pp. 152-154, 1971
    [CrossRef]
  3. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972
    [CrossRef]
  4. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, "Thermooptic planar polymer Bragg grating OADM"s with broad tuning range," IEEE Photon. Technol. Lett., vol. 11, no. 4, pp. 448-450, 1999
    [CrossRef]
  5. L. Xia, X. Li, X. Chen, and S. Xie, "A novel dispersion compensating fiber grating with a large chirp parameter and period sampled distribution,, vol. 227, no. 4/6, pp. 311-315, 2003
  6. C.-T. Lee, C.-T. Kuo, and H.-H. Lu, "Dispersion compensation in externally modulated transmission system using chirped fiber grating," Fiber and Integrated Optics, vol. 21, no. 4, pp. 269-276, 2002
    [CrossRef]
  7. D.-S. Shin, "Investigation of optical intensity modulator using electrically tunable reflection grating," J. Natural Science and Technology, vol. 7, pp. 23-27, 2004
  8. D.-S. Shin, "Optical intensity modulator based on the grating-corrugated electro-optic polymer waveguide," J. Natural Science and Technology, vol. 8, pp. 33-42, 2005
  9. See, for example, D. L. Lee, Electromagnetic Principles of Integrated Optics, (John Wiley & Sons, New York, NY), 1986
  10. C. H. Cox, III., Analog Optical Links: Theory and Practice, (Cambridge University Press, New York, NY), 2004
  11. J.S. Wei, "Distributed capacitance of planar electrodes in optic and acoustic surface wave devices," IEEE J.Quantum Electron., vol. QE-13, no. 4, pp. 152-158, 1977
    [CrossRef]
  12. S.-H. Lee, S. M. Garner, V. Chuyanov, H. Zhang, W. H. Steier, F. Wang, L. R. Dalton, A. H. Udupa, and H. R. Fetterman, "Optical intensity modulator based on a novel electrooptic polymer incorporating a high <TEX>${\mu}{\beta}$</TEX> chromophore," IEEE J. Quantum Electron., vol. 36, no. 5, pp. 527-532, 2000
    [CrossRef]
  13. Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, "Electrooptic polymer modulators with 0.8 V half-wave voltage," Appl. Phys. Lett., vol. 77, no. 1, pp. 1-3, 2000
    [CrossRef]
  14. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, "Low drive voltage, broad-band <TEX>$LiNbO_{3}$</TEX> modulators with and without etched ridges," J. Lightwave Technol., vol. 17, no. 2, pp. 2551-2555, 1999
    [CrossRef]
  15. K. Noguchi, H. Miyazawa, and O. Mitomi, "<TEX>$LiNbO_{3}$</TEX> high-speed modulator," Technical Digest of CLEO/Pacific Rim "99, vol. 4, pp.1267-1268, 1999

2005 (1)

D.-S. Shin, "Optical intensity modulator based on the grating-corrugated electro-optic polymer waveguide," J. Natural Science and Technology, vol. 8, pp. 33-42, 2005

2004 (2)

C. H. Cox, III., Analog Optical Links: Theory and Practice, (Cambridge University Press, New York, NY), 2004

D.-S. Shin, "Investigation of optical intensity modulator using electrically tunable reflection grating," J. Natural Science and Technology, vol. 7, pp. 23-27, 2004

2003 (1)

L. Xia, X. Li, X. Chen, and S. Xie, "A novel dispersion compensating fiber grating with a large chirp parameter and period sampled distribution,, vol. 227, no. 4/6, pp. 311-315, 2003

2002 (2)

C.-T. Lee, C.-T. Kuo, and H.-H. Lu, "Dispersion compensation in externally modulated transmission system using chirped fiber grating," Fiber and Integrated Optics, vol. 21, no. 4, pp. 269-276, 2002
[CrossRef]

See, for example, E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA), 2002

2000 (2)

S.-H. Lee, S. M. Garner, V. Chuyanov, H. Zhang, W. H. Steier, F. Wang, L. R. Dalton, A. H. Udupa, and H. R. Fetterman, "Optical intensity modulator based on a novel electrooptic polymer incorporating a high <TEX>${\mu}{\beta}$</TEX> chromophore," IEEE J. Quantum Electron., vol. 36, no. 5, pp. 527-532, 2000
[CrossRef]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, "Electrooptic polymer modulators with 0.8 V half-wave voltage," Appl. Phys. Lett., vol. 77, no. 1, pp. 1-3, 2000
[CrossRef]

1999 (3)

W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, "Low drive voltage, broad-band <TEX>$LiNbO_{3}$</TEX> modulators with and without etched ridges," J. Lightwave Technol., vol. 17, no. 2, pp. 2551-2555, 1999
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, "<TEX>$LiNbO_{3}$</TEX> high-speed modulator," Technical Digest of CLEO/Pacific Rim "99, vol. 4, pp.1267-1268, 1999

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, "Thermooptic planar polymer Bragg grating OADM"s with broad tuning range," IEEE Photon. Technol. Lett., vol. 11, no. 4, pp. 448-450, 1999
[CrossRef]

1986 (1)

See, for example, D. L. Lee, Electromagnetic Principles of Integrated Optics, (John Wiley & Sons, New York, NY), 1986

1977 (1)

J.S. Wei, "Distributed capacitance of planar electrodes in optic and acoustic surface wave devices," IEEE J.Quantum Electron., vol. QE-13, no. 4, pp. 152-158, 1977
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, "Stimulated emission in a periodic structure," Appl. Phys. Lett., vol. 18, no. 4, pp. 152-154, 1971
[CrossRef]

Appl. Phys. Lett. (2)

H. Kogelnik and C. V. Shank, "Stimulated emission in a periodic structure," Appl. Phys. Lett., vol. 18, no. 4, pp. 152-154, 1971
[CrossRef]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, "Electrooptic polymer modulators with 0.8 V half-wave voltage," Appl. Phys. Lett., vol. 77, no. 1, pp. 1-3, 2000
[CrossRef]

Fiber and Integrated Optics (1)

C.-T. Lee, C.-T. Kuo, and H.-H. Lu, "Dispersion compensation in externally modulated transmission system using chirped fiber grating," Fiber and Integrated Optics, vol. 21, no. 4, pp. 269-276, 2002
[CrossRef]

J. Natural Science and Technology (2)

D.-S. Shin, "Investigation of optical intensity modulator using electrically tunable reflection grating," J. Natural Science and Technology, vol. 7, pp. 23-27, 2004

D.-S. Shin, "Optical intensity modulator based on the grating-corrugated electro-optic polymer waveguide," J. Natural Science and Technology, vol. 8, pp. 33-42, 2005

Journal of Applied Physics (1)

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972
[CrossRef]

Lightwave Technology, Journal of (1)

W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, "Low drive voltage, broad-band <TEX>$LiNbO_{3}$</TEX> modulators with and without etched ridges," J. Lightwave Technol., vol. 17, no. 2, pp. 2551-2555, 1999
[CrossRef]

Optics Communications (1)

L. Xia, X. Li, X. Chen, and S. Xie, "A novel dispersion compensating fiber grating with a large chirp parameter and period sampled distribution,, vol. 227, no. 4/6, pp. 311-315, 2003

Photonics Technology Letters, IEEE (1)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, "Thermooptic planar polymer Bragg grating OADM"s with broad tuning range," IEEE Photon. Technol. Lett., vol. 11, no. 4, pp. 448-450, 1999
[CrossRef]

Quantum Electronics, IEEE Journal of (2)

J.S. Wei, "Distributed capacitance of planar electrodes in optic and acoustic surface wave devices," IEEE J.Quantum Electron., vol. QE-13, no. 4, pp. 152-158, 1977
[CrossRef]

S.-H. Lee, S. M. Garner, V. Chuyanov, H. Zhang, W. H. Steier, F. Wang, L. R. Dalton, A. H. Udupa, and H. R. Fetterman, "Optical intensity modulator based on a novel electrooptic polymer incorporating a high <TEX>${\mu}{\beta}$</TEX> chromophore," IEEE J. Quantum Electron., vol. 36, no. 5, pp. 527-532, 2000
[CrossRef]

Technical Digest of CLEO/Pacific Rim '99 (1)

K. Noguchi, H. Miyazawa, and O. Mitomi, "<TEX>$LiNbO_{3}$</TEX> high-speed modulator," Technical Digest of CLEO/Pacific Rim "99, vol. 4, pp.1267-1268, 1999

Other (3)

See, for example, E. Hecht, Optics, 4th ed., (Addison Wesley, Reading, MA), 2002

See, for example, D. L. Lee, Electromagnetic Principles of Integrated Optics, (John Wiley & Sons, New York, NY), 1986

C. H. Cox, III., Analog Optical Links: Theory and Practice, (Cambridge University Press, New York, NY), 2004

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.