Abstract

The variation of global coherence on propagation plane by plane is examined in the framework of coherent mode representation. It is explained through concrete examples that the global coherence may in general be enhanced, may be reduced, or may not change. When the mode functions form a complete set and the corresponding eigenvalues are in nitely degenerate, there necessarily develops a certain amount of global coherence on propagation, which is the essence of van Cittert-Zernike theorem. The propagation generates a certain pattern of the eigenvalue spectrum from the initial flat one and this is shown to be related to the non-unitarity of the propagation kernel.

© 2006 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. E. Wolf, J. Opt. Soc. Am., vol. 72, 343 (1982); vol. A3, 76 (1986)
    [CrossRef]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995), Sec. 4.3
  3. K. Kim, D. Y. Park, and J. G. Kim, J. Kor. Phys. Soc., vol. 35, 186 (1999)
  4. A. Starikov and E. Wolf, J. Opt. Soc., Am. vol. 72, 923 (1982)
    [CrossRef]
  5. J. T. Foley, K. Kim, and H. M. Nussenzveig, J. Opt Soc. Am. A, vol. 5, 1694 (1988)
    [CrossRef]
  6. P. H. van Cittert, Physica, vol. 1, 201 (1934)
    [CrossRef]
  7. F. Zernike, Physica, vol. 5, 785 (1938)
    [CrossRef]
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, Cambridge University Press, 1999), Sec. 10.4.2
  9. F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1970); F. Riecz and B. Sz.-Nagy, Functional Analysis (Ungar, New York, 1955)
  10. H. Gamo, J. Phys. Soc. Jpn., vol. 19, 580 (1964)
  11. E. Wolf, J. Opt. Soc. Am. A, vol. 3, 1920 (1986)
    [CrossRef]

1999

K. Kim, D. Y. Park, and J. G. Kim, J. Kor. Phys. Soc., vol. 35, 186 (1999)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, Cambridge University Press, 1999), Sec. 10.4.2

1995

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995), Sec. 4.3

1988

J. T. Foley, K. Kim, and H. M. Nussenzveig, J. Opt Soc. Am. A, vol. 5, 1694 (1988)
[CrossRef]

1986

E. Wolf, J. Opt. Soc. Am., vol. 72, 343 (1982); vol. A3, 76 (1986)
[CrossRef]

E. Wolf, J. Opt. Soc. Am. A, vol. 3, 1920 (1986)
[CrossRef]

1982

A. Starikov and E. Wolf, J. Opt. Soc., Am. vol. 72, 923 (1982)
[CrossRef]

1970

F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1970); F. Riecz and B. Sz.-Nagy, Functional Analysis (Ungar, New York, 1955)

1964

H. Gamo, J. Phys. Soc. Jpn., vol. 19, 580 (1964)

1938

F. Zernike, Physica, vol. 5, 785 (1938)
[CrossRef]

1934

P. H. van Cittert, Physica, vol. 1, 201 (1934)
[CrossRef]

J. Kor. Phys. Soc.

K. Kim, D. Y. Park, and J. G. Kim, J. Kor. Phys. Soc., vol. 35, 186 (1999)

J. Phys. Soc. Jpn.

H. Gamo, J. Phys. Soc. Jpn., vol. 19, 580 (1964)

Journal of the Optical Society of America

E. Wolf, J. Opt. Soc. Am., vol. 72, 343 (1982); vol. A3, 76 (1986)
[CrossRef]

A. Starikov and E. Wolf, J. Opt. Soc., Am. vol. 72, 923 (1982)
[CrossRef]

Journal of the Optical Society of America A

J. T. Foley, K. Kim, and H. M. Nussenzveig, J. Opt Soc. Am. A, vol. 5, 1694 (1988)
[CrossRef]

E. Wolf, J. Opt. Soc. Am. A, vol. 3, 1920 (1986)
[CrossRef]

Physica

P. H. van Cittert, Physica, vol. 1, 201 (1934)
[CrossRef]

F. Zernike, Physica, vol. 5, 785 (1938)
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, Cambridge University Press, 1999), Sec. 10.4.2

F. Smithies, Integral Equations (Cambridge University Press, Cambridge, 1970); F. Riecz and B. Sz.-Nagy, Functional Analysis (Ungar, New York, 1955)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995), Sec. 4.3

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.