Abstract

We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a double line defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it is demonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427 ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersion coefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at 1.55 μm is 1.92 x 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (covering O to U bands) is about 1.8 x 10-2 to 1.92 x 10-2. It is confirmed that from the simulation results, the confinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber rings of air holes in the cladding.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. F. Orlando, M. T. Baptista, and L. Santos, "Recent Advances in High-Birefringence Fiber Loop Mirror Sensors," Sensors 7, 2970-2983 (2007).
    [Crossref]
  2. M. Karimi, T. Sun, and K. T. V. Grattan, "Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications," IEEE Sensors J. 13, 4459-4464 (2013).
    [Crossref]
  3. A. M. Vengsarkar and W. A. Reed, "Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation," Opt. Lett. 18, 924-926 (1993).
    [Crossref]
  4. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
    [Crossref]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [Crossref]
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [Crossref]
  7. J. C. Knight and P. St. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002)
    [Crossref]
  8. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [Crossref]
  9. K. Saitoh and K. Masanori, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technol. Lett. 15, 1384-1386 (2003).
    [Crossref]
  10. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [Crossref]
  11. F. Poletti, V. Finazzi, T. M. Monro, N. G. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005).
    [Crossref]
  12. A. Ferrando, E. Silvestre, J. J. Miret, and P.Andrés, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).
    [Crossref]
  13. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [Crossref]
  14. J. C. Knight and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express 15, 15365-15376 (2007).
    [Crossref]
  15. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [Crossref]
  16. H. Ademgil and S. Haxha, "Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses," J. Lightwave Technol. 26, 441-448 (2008).
    [Crossref]
  17. D. Chen and S. Linfang, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
  18. T. Matsui, K. Nakajima, and I. Sankawa, "Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber," J. Lightwave Technol. 25, 757-762 (2007).
    [Crossref]
  19. J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
    [Crossref]
  20. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [Crossref]
  21. Soan Kim, Chul-Sik Kee, Jongmin Lee, Yongmin Jung, Hyoung-Gyu Choi, Kyunghwan Oh, "Ultrahigh birefringence of elliptic core fiber with irregular air holes," J. Appl. Phys. 101, 016101 (2007).
    [Crossref]
  22. M. J. Steel and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
    [Crossref]
  23. L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004).
    [Crossref]
  24. P. Song, L. Zhang, Z. Wang, Q. Hu, S. Zhao, S. Jiang, and S. Liu, "Birefringence characteristics of squeezed lattice photonic crystal fiber," J. Lightwave Technol. 25, 1771-1776 (2007).
    [Crossref]
  25. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
    [Crossref]
  26. Md. S. Habib, Md. S. Habib, S.M. A. Razzak, Md. A. Hossain, "Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber," Opt. Fiber Technol. 19, 461-467 (2013).
    [Crossref]
  27. M. A. Islam and M. S. Alam, "Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence," J. Lightwave Technol. 30, 3545-3551 (2012).
    [Crossref]
  28. W. Wang, B. Yang, H. Song, and Y. Fan, "Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice," Optik 124, 2901-2903 (2013).
    [Crossref]
  29. S. Kim, Y. S. Lee, C. G. Lee, Y. Jung, and K. Oh, "Hybrid Square-Lattice Photonic Crystal Fiber with Broadband Single-Mode Operation, High Birefringence, and Normal Dispersion," J. Opt. Soc. Korea 19, 449-455 (2015).
    [Crossref]
  30. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single-mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. Am. A 22, 1655-1661 (2005).
    [Crossref]
  31. A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, "Dispersion properties of square-lattice photonic crystal fibers," Opt. Express 12, 941-946 (2004).
    [Crossref]
  32. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
    [Crossref]
  33. P. Klocek, Handbook of infrared Optical Materials (Marcel Dekker, New York, NY, 1991).
  34. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
    [Crossref]
  35. W. H. Reeves, J. C. Knight, and P. S. J. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
    [Crossref]
  36. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single mode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
    [Crossref]
  37. J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, "Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre," Opt. Commun. 205, 95-99 (2002).
    [Crossref]
  38. R. Buczynski, "Photonic crystal fibers," Acta physica Polonica: A 106, 141-167 (2004).
    [Crossref]
  39. R. Buczynksi, P. Szamiak, D. Pysz, I. Kujawa, R. Stepien, and T. Szoplik, "Double-core photonic crystal fiber with square lattice," Proc. SPIE 5450, 223-230 (2004).
    [Crossref]
  40. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, "Square-lattice large pitch hollow-core photonic crystal fiber," Opt. Express 16, 20626-20636 (2008).
    [Crossref]
  41. P. Falkenstein, C. D. Merritt, and B. L. Justus, "Fused preforms for the fabrication of photonic crystal fibers," Opt. Lett. 29, 1858-1860 (2004).
    [Crossref]
  42. Y. D. Hazan, J. B. MacChesney, T. E. Stockert, D. J. Trevor, and R. S. Windeler, "Sol-gel method of making an optical fiber with multiple apertures," US Patent 6467312 B1 (2000).
  43. R. T. Bise and D. J. Trever, "Sol-gel derived microstructured fiber: fabrication and characterization," in Proc. Optical Fiber Communication Conf. 2005 (Anaheim, California United States, March 2005), CD, paper OWL6.

2015 (1)

2013 (3)

Md. S. Habib, Md. S. Habib, S.M. A. Razzak, Md. A. Hossain, "Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber," Opt. Fiber Technol. 19, 461-467 (2013).
[Crossref]

M. Karimi, T. Sun, and K. T. V. Grattan, "Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications," IEEE Sensors J. 13, 4459-4464 (2013).
[Crossref]

W. Wang, B. Yang, H. Song, and Y. Fan, "Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice," Optik 124, 2901-2903 (2013).
[Crossref]

2012 (1)

2008 (2)

2007 (6)

D. Chen and S. Linfang, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).

T. Matsui, K. Nakajima, and I. Sankawa, "Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber," J. Lightwave Technol. 25, 757-762 (2007).
[Crossref]

J. C. Knight and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express 15, 15365-15376 (2007).
[Crossref]

F. Orlando, M. T. Baptista, and L. Santos, "Recent Advances in High-Birefringence Fiber Loop Mirror Sensors," Sensors 7, 2970-2983 (2007).
[Crossref]

P. Song, L. Zhang, Z. Wang, Q. Hu, S. Zhao, S. Jiang, and S. Liu, "Birefringence characteristics of squeezed lattice photonic crystal fiber," J. Lightwave Technol. 25, 1771-1776 (2007).
[Crossref]

Soan Kim, Chul-Sik Kee, Jongmin Lee, Yongmin Jung, Hyoung-Gyu Choi, Kyunghwan Oh, "Ultrahigh birefringence of elliptic core fiber with irregular air holes," J. Appl. Phys. 101, 016101 (2007).
[Crossref]

2005 (3)

2004 (7)

P. Falkenstein, C. D. Merritt, and B. L. Justus, "Fused preforms for the fabrication of photonic crystal fibers," Opt. Lett. 29, 1858-1860 (2004).
[Crossref]

R. Buczynski, "Photonic crystal fibers," Acta physica Polonica: A 106, 141-167 (2004).
[Crossref]

R. Buczynksi, P. Szamiak, D. Pysz, I. Kujawa, R. Stepien, and T. Szoplik, "Double-core photonic crystal fiber with square lattice," Proc. SPIE 5450, 223-230 (2004).
[Crossref]

A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, "Dispersion properties of square-lattice photonic crystal fibers," Opt. Express 12, 941-946 (2004).
[Crossref]

Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[Crossref]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[Crossref]

L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004).
[Crossref]

2003 (4)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
[Crossref]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[Crossref]

K. Saitoh and K. Masanori, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technol. Lett. 15, 1384-1386 (2003).
[Crossref]

2002 (4)

J. C. Knight and P. St. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002)
[Crossref]

W. H. Reeves, J. C. Knight, and P. S. J. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single mode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[Crossref]

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, "Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre," Opt. Commun. 205, 95-99 (2002).
[Crossref]

2001 (2)

M. J. Steel and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[Crossref]

2000 (3)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[Crossref]

1997 (1)

1996 (1)

1993 (1)

1991 (1)

P. Klocek, Handbook of infrared Optical Materials (Marcel Dekker, New York, NY, 1991).

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
[Crossref]

1979 (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[Crossref]

Acta physica Polonica: A (1)

R. Buczynski, "Photonic crystal fibers," Acta physica Polonica: A 106, 141-167 (2004).
[Crossref]

Electron. Lett. (1)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single mode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[Crossref]

Handbook of infrared Optical Materials (1)

P. Klocek, Handbook of infrared Optical Materials (Marcel Dekker, New York, NY, 1991).

IEEE J. Quantum Electron. (1)

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979).
[Crossref]

IEEE Photon. Technol. Lett. (5)

D. Chen and S. Linfang, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[Crossref]

Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Saitoh and K. Masanori, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technol. Lett. 15, 1384-1386 (2003).
[Crossref]

IEEE Sensors J. (1)

M. Karimi, T. Sun, and K. T. V. Grattan, "Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications," IEEE Sensors J. 13, 4459-4464 (2013).
[Crossref]

J. Appl. Phys. (1)

Soan Kim, Chul-Sik Kee, Jongmin Lee, Yongmin Jung, Hyoung-Gyu Choi, Kyunghwan Oh, "Ultrahigh birefringence of elliptic core fiber with irregular air holes," J. Appl. Phys. 101, 016101 (2007).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Nature (1)

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[Crossref]

Opt. Commun. (1)

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, "Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre," Opt. Commun. 205, 95-99 (2002).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

Md. S. Habib, Md. S. Habib, S.M. A. Razzak, Md. A. Hossain, "Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber," Opt. Fiber Technol. 19, 461-467 (2013).
[Crossref]

Opt. Lett. (7)

Optik (1)

W. Wang, B. Yang, H. Song, and Y. Fan, "Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice," Optik 124, 2901-2903 (2013).
[Crossref]

Proc. Optical Fiber Communication Conf. 2005 (1)

R. T. Bise and D. J. Trever, "Sol-gel derived microstructured fiber: fabrication and characterization," in Proc. Optical Fiber Communication Conf. 2005 (Anaheim, California United States, March 2005), CD, paper OWL6.

Proc. SPIE (1)

R. Buczynksi, P. Szamiak, D. Pysz, I. Kujawa, R. Stepien, and T. Szoplik, "Double-core photonic crystal fiber with square lattice," Proc. SPIE 5450, 223-230 (2004).
[Crossref]

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[Crossref]

J. C. Knight and P. St. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002)
[Crossref]

Sensors (1)

F. Orlando, M. T. Baptista, and L. Santos, "Recent Advances in High-Birefringence Fiber Loop Mirror Sensors," Sensors 7, 2970-2983 (2007).
[Crossref]

US Patent (1)

Y. D. Hazan, J. B. MacChesney, T. E. Stockert, D. J. Trevor, and R. S. Windeler, "Sol-gel method of making an optical fiber with multiple apertures," US Patent 6467312 B1 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.