Abstract

A 2 Gbit/s visible-light communication (VLC) scheme using time-frequency color-clustered (TFCC) multiple-input multiple-output (MIMO) based on blue, cyan, yellow, and red (BCYR) light-emitting diodes (LEDs) is presented. In the proposed scheme, BCYR LEDs are employed to form four different color clusters. Data transmission using the four color clusters is performed in MIMO, so that the scheme achieves a very high speed of data transmission. Moreover, the scheme employs the TFCC strategy to yield high performance in terms of bit error rate (BER). TFCC operates in such a way that the original data and the two delayed versions of the data are multiplied by orthogonal frequencies and then transmitted using a specific color of the BCYR LED. In the receiver, color filters are employed to detect the data transmitted from the desired cluster. Selection combining (SC) is also performed to yield a diversity effect within each color cluster, to further improve the performance. Performance evaluation demonstrates that the proposed TFCC MIMO VLC offers a data rate of 2 Gbit/s and a bit error rate of 4×10<sup>-5</sup>, at an E<sub>b</sub>/N<sub>o</sub> value of merely 3 dB.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Comm. Mag. 52, 122-130 (2014).
  2. L. Zeng, D. O"brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Comm. 27, 1654-1662 (2009).
    [Crossref]
  3. Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (Manchester, UK, 2014), pp. 314-318.
  4. S. M. Kim and J. B. Jeon, “Experimental demonstration of 4x4 MIMO wireless visible light communication using a commercial CCD image sensor,” J. Information and Comm. Convergence Engineering 10, 220-224 (2012).
    [Crossref]
  5. H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22, 3468-3474 (2014).
    [Crossref]
  6. A. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25, 171-174 (2013).
    [Crossref]
  7. R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, “Indoor MIMO optical wireless communication using spatial modulation,” in Proc. IEEE International Conference on Communications (Cape Town, South Africa, May 2010), pp. 1-5.
  8. N. A. Tran, D. Luong, T. Thang, and A. Pham, “Performance analysis of indoor MIMO visible light communication systems,” in Proc. IEEE Fifth International Conference on Communications and Electronics (Danang, Vietnam, July 2014), pp. 60-64.
  9. P. P. Han, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Color clustered multiple-input multiple-output visible light communication,” J. Opt. Soc. Korea 19, 74-79 (2015).
    [Crossref]
  10. K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. on Emerging Telecomm. Technol. 25, 579-590 (2014).
    [Crossref]
  11. A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153-156 (2015).
    [Crossref]
  12. R. Singh, T. O’Farrell, and J. David, “An enhanced color shift keying modulation scheme for high-speed wireless visible light communications,” IEEE J. Lightwave Technol. 32, 2582-2592 (2014).
    [Crossref]
  13. R. D. Koudelka and J. M. Woodall, "Light emitting devices with increased modulation bandwidth," http://www.eng.yale.edu/posters150/pdf/woodall2.pdf/
  14. Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. J. Wang, and J. Li, “LED modulation characteristics in a visible-light communication system,” Opt. and Photon. J. 3, 139-142 (2013).
    [Crossref]
  15. C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang, “Ghz bandwidth gas light-emitting diodes,” Appl. Phys. Lett. 74, 3140-3142 (1999).
    [Crossref]
  16. J. Kahn, R. You, P. Djahani, A. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Comm. Mag. 36, 88-94 (1998).
  17. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100-107 (2004).
    [Crossref]
  18. P. Lumileds, "Luxeon Rebel and Luxeon Rebel ES," http://www.philipslumileds.com/products/luxeonrebel/luxeonrebel-color/
  19. A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Smart LED allocation scheme for efficient multiuser visible light communication networks,” Opt. Express 23, 13015-13024 (2015).
    [Crossref]

2015 (3)

2014 (6)

N. A. Tran, D. Luong, T. Thang, and A. Pham, “Performance analysis of indoor MIMO visible light communication systems,” in Proc. IEEE Fifth International Conference on Communications and Electronics (Danang, Vietnam, July 2014), pp. 60-64.

R. Singh, T. O’Farrell, and J. David, “An enhanced color shift keying modulation scheme for high-speed wireless visible light communications,” IEEE J. Lightwave Technol. 32, 2582-2592 (2014).
[Crossref]

K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. on Emerging Telecomm. Technol. 25, 579-590 (2014).
[Crossref]

H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22, 3468-3474 (2014).
[Crossref]

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Comm. Mag. 52, 122-130 (2014).

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (Manchester, UK, 2014), pp. 314-318.

2013 (2)

A. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25, 171-174 (2013).
[Crossref]

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. J. Wang, and J. Li, “LED modulation characteristics in a visible-light communication system,” Opt. and Photon. J. 3, 139-142 (2013).
[Crossref]

2012 (1)

S. M. Kim and J. B. Jeon, “Experimental demonstration of 4x4 MIMO wireless visible light communication using a commercial CCD image sensor,” J. Information and Comm. Convergence Engineering 10, 220-224 (2012).
[Crossref]

2010 (1)

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, “Indoor MIMO optical wireless communication using spatial modulation,” in Proc. IEEE International Conference on Communications (Cape Town, South Africa, May 2010), pp. 1-5.

2009 (1)

L. Zeng, D. O"brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Comm. 27, 1654-1662 (2009).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100-107 (2004).
[Crossref]

1999 (1)

C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang, “Ghz bandwidth gas light-emitting diodes,” Appl. Phys. Lett. 74, 3140-3142 (1999).
[Crossref]

1998 (1)

J. Kahn, R. You, P. Djahani, A. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Comm. Mag. 36, 88-94 (1998).

Appl. Phys. Lett. (1)

C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang, “Ghz bandwidth gas light-emitting diodes,” Appl. Phys. Lett. 74, 3140-3142 (1999).
[Crossref]

IEEE Comm. Mag. (2)

J. Kahn, R. You, P. Djahani, A. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Comm. Mag. 36, 88-94 (1998).

C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Comm. Mag. 52, 122-130 (2014).

IEEE J. Lightwave Technol. (1)

R. Singh, T. O’Farrell, and J. David, “An enhanced color shift keying modulation scheme for high-speed wireless visible light communications,” IEEE J. Lightwave Technol. 32, 2582-2592 (2014).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

L. Zeng, D. O"brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Comm. 27, 1654-1662 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25, 171-174 (2013).
[Crossref]

IEEE Trans. Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100-107 (2004).
[Crossref]

J. Information and Comm. Convergence Engineering (1)

S. M. Kim and J. B. Jeon, “Experimental demonstration of 4x4 MIMO wireless visible light communication using a commercial CCD image sensor,” J. Information and Comm. Convergence Engineering 10, 220-224 (2012).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. and Photon. J. (1)

Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. J. Wang, and J. Li, “LED modulation characteristics in a visible-light communication system,” Opt. and Photon. J. 3, 139-142 (2013).
[Crossref]

Opt. Commun. (1)

A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153-156 (2015).
[Crossref]

Opt. Express (2)

Proc. 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (1)

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (Manchester, UK, 2014), pp. 314-318.

Proc. IEEE Fifth International Conference on Communications and Electronics (1)

N. A. Tran, D. Luong, T. Thang, and A. Pham, “Performance analysis of indoor MIMO visible light communication systems,” in Proc. IEEE Fifth International Conference on Communications and Electronics (Danang, Vietnam, July 2014), pp. 60-64.

Proc. IEEE International Conference on Communications (1)

R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, “Indoor MIMO optical wireless communication using spatial modulation,” in Proc. IEEE International Conference on Communications (Cape Town, South Africa, May 2010), pp. 1-5.

Trans. on Emerging Telecomm. Technol. (1)

K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. on Emerging Telecomm. Technol. 25, 579-590 (2014).
[Crossref]

Other (2)

R. D. Koudelka and J. M. Woodall, "Light emitting devices with increased modulation bandwidth," http://www.eng.yale.edu/posters150/pdf/woodall2.pdf/

P. Lumileds, "Luxeon Rebel and Luxeon Rebel ES," http://www.philipslumileds.com/products/luxeonrebel/luxeonrebel-color/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.