Abstract

Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

© 2011 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, "All-optical flip-flop operation based on polarization bistability of conventional-type <TEX>$1.55-{\mu}m$</TEX> wavelength single-mode VCSELs," J. Opt. Soc. Korea 14, 137-141 (2010).
    [CrossRef]
  2. S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010).
    [CrossRef]
  3. R. Puchert, A. Barwolff, U. Menzel, A. Lau, M. Voss, and T. Elsaesser, "Facet and bulk heating of GaAs/AlGaAs high-power laser arrays studied in spatially resolved emission and micro-Raman experiments," J. Appl. Phys. 80, 5559-5563 (1996).
    [CrossRef]
  4. M. B. Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Muller, M. Reufer, K. Streubel, J. W. Tomm, and G. Bacher, "Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes," Appl. Phys. Lett. 91, 041115-041115-3 (2007).
    [CrossRef]
  5. M. Hempel, J. W. Tomm, M. Ziegler, T. Elsaesser, N. Michel, and M. Krakowski, "Catastrophic optical damage at front and rear facets of diode lasers," Appl. Phys. Lett. 97, 231101-231101-3 (2010).
    [CrossRef]
  6. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
    [CrossRef]
  7. S. Y. Law and G. P. Agrawal, "Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 462-468 (1997).
    [CrossRef]
  8. H. J. Unold, M. Golling, F. Mederer, R. Michalzik, D. Supper, and K. J. Ebeling, "Single mode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching," Electron. Lett. 37, 570-572 (2001).
    [CrossRef]
  9. W. T. Tsang, "Extermely low threshold (AlGa)As gradedindex waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett. 40, 217-219 (1982).
    [CrossRef]
  10. J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, "Threshold current of single quantum well lasers: the role of the confining layers," Appl. Phys. Lett. 49, 1325-1327 (1986).
    [CrossRef]
  11. J. A. Martin and M. Sanchez, "Comparison between a graded and setp-index optical cavity in InGaN MQW laser diodes," Semicond. Sci. Technol. 20, 290-295 (2005).
    [CrossRef]
  12. D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul"nikov, P. S. Kop"ev, and Zh. I. Alferov, "Quantum dot lasers: breakthrough in optoelectronics," Thin Solid Films 367, 235-249 (2007).
  13. M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop"ev, and Zh. I. Alferov, "Ultra narrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995).
    [CrossRef]
  14. A. R. Kovsh, J. S. Wang, R. S. Hsiao, L. P. Chen, D. A. Livshits, G. Lin, V. M. Ustinov, and J. Y. Chi, "High power (200 mW) single mode operation of GaAs based InGaAsN/GaAs ridge waveguide lasers with wavelength around 1300 nm," Electron. Lett. 39, 1726-1728 (2003).
    [CrossRef]
  15. Z.-M. Li, "Physical models and numberical simulation of modern semiconductor lasers," Proc. SPIE 2994, 698-708 (1997).
    [CrossRef]

2010 (3)

S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, "All-optical flip-flop operation based on polarization bistability of conventional-type <TEX>$1.55-{\mu}m$</TEX> wavelength single-mode VCSELs," J. Opt. Soc. Korea 14, 137-141 (2010).
[CrossRef]

S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010).
[CrossRef]

M. Hempel, J. W. Tomm, M. Ziegler, T. Elsaesser, N. Michel, and M. Krakowski, "Catastrophic optical damage at front and rear facets of diode lasers," Appl. Phys. Lett. 97, 231101-231101-3 (2010).
[CrossRef]

2007 (2)

M. B. Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Muller, M. Reufer, K. Streubel, J. W. Tomm, and G. Bacher, "Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes," Appl. Phys. Lett. 91, 041115-041115-3 (2007).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul"nikov, P. S. Kop"ev, and Zh. I. Alferov, "Quantum dot lasers: breakthrough in optoelectronics," Thin Solid Films 367, 235-249 (2007).

2005 (1)

J. A. Martin and M. Sanchez, "Comparison between a graded and setp-index optical cavity in InGaN MQW laser diodes," Semicond. Sci. Technol. 20, 290-295 (2005).
[CrossRef]

2003 (1)

A. R. Kovsh, J. S. Wang, R. S. Hsiao, L. P. Chen, D. A. Livshits, G. Lin, V. M. Ustinov, and J. Y. Chi, "High power (200 mW) single mode operation of GaAs based InGaAsN/GaAs ridge waveguide lasers with wavelength around 1300 nm," Electron. Lett. 39, 1726-1728 (2003).
[CrossRef]

2001 (1)

H. J. Unold, M. Golling, F. Mederer, R. Michalzik, D. Supper, and K. J. Ebeling, "Single mode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching," Electron. Lett. 37, 570-572 (2001).
[CrossRef]

1997 (2)

S. Y. Law and G. P. Agrawal, "Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 462-468 (1997).
[CrossRef]

Z.-M. Li, "Physical models and numberical simulation of modern semiconductor lasers," Proc. SPIE 2994, 698-708 (1997).
[CrossRef]

1996 (1)

R. Puchert, A. Barwolff, U. Menzel, A. Lau, M. Voss, and T. Elsaesser, "Facet and bulk heating of GaAs/AlGaAs high-power laser arrays studied in spatially resolved emission and micro-Raman experiments," J. Appl. Phys. 80, 5559-5563 (1996).
[CrossRef]

1995 (1)

M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop"ev, and Zh. I. Alferov, "Ultra narrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995).
[CrossRef]

1994 (1)

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
[CrossRef]

1986 (1)

J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, "Threshold current of single quantum well lasers: the role of the confining layers," Appl. Phys. Lett. 49, 1325-1327 (1986).
[CrossRef]

1982 (1)

W. T. Tsang, "Extermely low threshold (AlGa)As gradedindex waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett. 40, 217-219 (1982).
[CrossRef]

Appl. Phys. Lett. (5)

M. B. Sanayeh, P. Brick, W. Schmid, B. Mayer, M. Muller, M. Reufer, K. Streubel, J. W. Tomm, and G. Bacher, "Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes," Appl. Phys. Lett. 91, 041115-041115-3 (2007).
[CrossRef]

M. Hempel, J. W. Tomm, M. Ziegler, T. Elsaesser, N. Michel, and M. Krakowski, "Catastrophic optical damage at front and rear facets of diode lasers," Appl. Phys. Lett. 97, 231101-231101-3 (2010).
[CrossRef]

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, "Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes," Appl. Phys. Lett. 64, 542-544 (1994).
[CrossRef]

W. T. Tsang, "Extermely low threshold (AlGa)As gradedindex waveguide separate-confinement heterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett. 40, 217-219 (1982).
[CrossRef]

J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, "Threshold current of single quantum well lasers: the role of the confining layers," Appl. Phys. Lett. 49, 1325-1327 (1986).
[CrossRef]

Electron. Lett. (2)

A. R. Kovsh, J. S. Wang, R. S. Hsiao, L. P. Chen, D. A. Livshits, G. Lin, V. M. Ustinov, and J. Y. Chi, "High power (200 mW) single mode operation of GaAs based InGaAsN/GaAs ridge waveguide lasers with wavelength around 1300 nm," Electron. Lett. 39, 1726-1728 (2003).
[CrossRef]

H. J. Unold, M. Golling, F. Mederer, R. Michalzik, D. Supper, and K. J. Ebeling, "Single mode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching," Electron. Lett. 37, 570-572 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Y. Law and G. P. Agrawal, "Effects of spatial hole burning on gain switching in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 462-468 (1997).
[CrossRef]

J. Appl. Phys. (1)

R. Puchert, A. Barwolff, U. Menzel, A. Lau, M. Voss, and T. Elsaesser, "Facet and bulk heating of GaAs/AlGaAs high-power laser arrays studied in spatially resolved emission and micro-Raman experiments," J. Appl. Phys. 80, 5559-5563 (1996).
[CrossRef]

Journal of the Optical Society of Korea (2)

S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, "All-optical flip-flop operation based on polarization bistability of conventional-type <TEX>$1.55-{\mu}m$</TEX> wavelength single-mode VCSELs," J. Opt. Soc. Korea 14, 137-141 (2010).
[CrossRef]

S. Kim, Y. T. Byun, D.-G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kop"ev, and Zh. I. Alferov, "Ultra narrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995).
[CrossRef]

Proc. SPIE (1)

Z.-M. Li, "Physical models and numberical simulation of modern semiconductor lasers," Proc. SPIE 2994, 698-708 (1997).
[CrossRef]

Semicond. Sci. Technol. (1)

J. A. Martin and M. Sanchez, "Comparison between a graded and setp-index optical cavity in InGaN MQW laser diodes," Semicond. Sci. Technol. 20, 290-295 (2005).
[CrossRef]

Thin Solid Films (1)

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul"nikov, P. S. Kop"ev, and Zh. I. Alferov, "Quantum dot lasers: breakthrough in optoelectronics," Thin Solid Films 367, 235-249 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.