Abstract

Recent research efforts on study of silicon photonics utilizing stimulated Raman scattering have largely overlooked temperature effects. In this paper, we incorporated the temperature dependences into the key parameters governing wave propagation in silicon waveguides with Raman gain and investigated how the temperature affects the solution of the coupled-mode equations. We then carried out, as one particular application example, a numerical analysis of the performance of wavelength converters based on stimulated Raman scattering at temperatures ranging from 298 K to 500 K. The analysis predicted, among other things, that the wavelength conversion efficiency could decrease by as much as 12 dB at 500 K in comparison to that at the room temperature. These results indicate that it is necessary to take a careful account of temperature effects in designing, fabricating, and operating Raman silicon photonic devices.

© 2008 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 6, pp. 1678-1687, 2006
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Tech., vol. 24, no. 12, pp. 4600-4615, 2006
    [CrossRef]
  3. G. T. Reed and A. P. Knights, Silicon Photonics - An Introduction, (John Wiley & Sons, NJ, 2004)
  4. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 3, pp. 412-421, 2006
    [CrossRef]
  5. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature, vol. 433, no. 20, pp. 292-294, 2005
    [CrossRef]
  6. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguide,” J. Lightwave Tech., vol. 23, no. 6, pp. 2904-2102, 2005
    [CrossRef]
  7. T. R. Hart, R. L. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
    [CrossRef]
  8. P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
    [CrossRef]
  9. J. M. Ralston and R. K. Chang, “Spontaneous-Raman scattering efficiency and stimulated scattering in silicon,” Phys. Rev. B., vol. 2, no. 6, pp. 1858-1862, 1970
    [CrossRef]
  10. M. Balkanski, R. F. Wallis, and E. Haro, “Anharmornic effects in light scattering due to optical phonon in silicon,” Phys. Rev. B., vol. 28, no. 4, pp. 1928-1934, 1983
    [CrossRef]
  11. A. Compaan and H. J. Trodahl, “Resonance Raman scattering in Si at elevated temperatures,” Phys. Rev. B., vol. 29, no. 2, pp. 793-801, 1984
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rded., (Academic Press, San Diego, 2002)
  13. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of parametric effects and stimulated Raman scattering in optical waveguide,” J. IEEE Quantum Elec., vol. 26, no. 10, pp. 1815-1820, 1990
    [CrossRef]
  14. R. Loudon, “The Raman effect in crystals,” Advan. Phys. vol. 13, pp. 423-482, 1964
    [CrossRef]
  15. C. Kittel, Introduction to Solid State Physics, 8th ed, (John Wiley & Sons, Hoboken, NJ, 2005)
  16. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed., (Springer-Verlag, Berlin, 2001)
  17. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2196-2198, 2004
    [CrossRef]
  18. J. Niu, J. Sha, and D. Yang, “Temperature dependence of first-order Raman scattering in silicon nanowire,” Scrip. Mat., vol. 55, pp. 183-186, 2006
    [CrossRef]
  19. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. vol. 137, no. 6A, pp. A1787-A1805, 1965
    [CrossRef]
  20. Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)
  21. R. Claps and D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguide at 1.54um,” Opt. Exp., vol. 10. no. 22, pp. 1305-1313, 2002
  22. J. Touminen, T. Niemi, and H. Ludvigsen, “Wavelength reference for optical telecommunications based on a temperature-tunable silicon etalon,” Rev. Sci. Instrum., vol. 74, no. 8, pp. 3620-3623, 2003
    [CrossRef]
  23. R. W. Boyd, Nonlinear Optics, 2nded., (Academic Press, San Diego, 2003
  24. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004)

2006 (4)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 3, pp. 412-421, 2006
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 6, pp. 1678-1687, 2006
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Tech., vol. 24, no. 12, pp. 4600-4615, 2006
[CrossRef]

J. Niu, J. Sha, and D. Yang, “Temperature dependence of first-order Raman scattering in silicon nanowire,” Scrip. Mat., vol. 55, pp. 183-186, 2006
[CrossRef]

2005 (3)

C. Kittel, Introduction to Solid State Physics, 8th ed, (John Wiley & Sons, Hoboken, NJ, 2005)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature, vol. 433, no. 20, pp. 292-294, 2005
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguide,” J. Lightwave Tech., vol. 23, no. 6, pp. 2904-2102, 2005
[CrossRef]

2004 (3)

G. T. Reed and A. P. Knights, Silicon Photonics - An Introduction, (John Wiley & Sons, NJ, 2004)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2196-2198, 2004
[CrossRef]

L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004)

2003 (2)

J. Touminen, T. Niemi, and H. Ludvigsen, “Wavelength reference for optical telecommunications based on a temperature-tunable silicon etalon,” Rev. Sci. Instrum., vol. 74, no. 8, pp. 3620-3623, 2003
[CrossRef]

R. W. Boyd, Nonlinear Optics, 2nded., (Academic Press, San Diego, 2003

2002 (2)

R. Claps and D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguide at 1.54um,” Opt. Exp., vol. 10. no. 22, pp. 1305-1313, 2002

G. P. Agrawal, Nonlinear Fiber Optics, 3rded., (Academic Press, San Diego, 2002)

2001 (1)

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed., (Springer-Verlag, Berlin, 2001)

1990 (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of parametric effects and stimulated Raman scattering in optical waveguide,” J. IEEE Quantum Elec., vol. 26, no. 10, pp. 1815-1820, 1990
[CrossRef]

1984 (2)

A. Compaan and H. J. Trodahl, “Resonance Raman scattering in Si at elevated temperatures,” Phys. Rev. B., vol. 29, no. 2, pp. 793-801, 1984
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)

1983 (1)

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmornic effects in light scattering due to optical phonon in silicon,” Phys. Rev. B., vol. 28, no. 4, pp. 1928-1934, 1983
[CrossRef]

1970 (1)

J. M. Ralston and R. K. Chang, “Spontaneous-Raman scattering efficiency and stimulated scattering in silicon,” Phys. Rev. B., vol. 2, no. 6, pp. 1858-1862, 1970
[CrossRef]

1966 (2)

T. R. Hart, R. L. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
[CrossRef]

P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. vol. 137, no. 6A, pp. A1787-A1805, 1965
[CrossRef]

1964 (1)

R. Loudon, “The Raman effect in crystals,” Advan. Phys. vol. 13, pp. 423-482, 1964
[CrossRef]

Advances in Physics (1)

R. Loudon, “The Raman effect in crystals,” Advan. Phys. vol. 13, pp. 423-482, 1964
[CrossRef]

Appl. Phys. Lett. (1)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2196-2198, 2004
[CrossRef]

Lightwave Technology, Journal of (2)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Tech., vol. 24, no. 12, pp. 4600-4615, 2006
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguide,” J. Lightwave Tech., vol. 23, no. 6, pp. 2904-2102, 2005
[CrossRef]

Nature (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature, vol. 433, no. 20, pp. 292-294, 2005
[CrossRef]

Opt. Exp. (1)

R. Claps and D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguide at 1.54um,” Opt. Exp., vol. 10. no. 22, pp. 1305-1313, 2002

Phys. Rev. (3)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. vol. 137, no. 6A, pp. A1787-A1805, 1965
[CrossRef]

T. R. Hart, R. L. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
[CrossRef]

P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966
[CrossRef]

Phys. Rev. B (3)

J. M. Ralston and R. K. Chang, “Spontaneous-Raman scattering efficiency and stimulated scattering in silicon,” Phys. Rev. B., vol. 2, no. 6, pp. 1858-1862, 1970
[CrossRef]

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmornic effects in light scattering due to optical phonon in silicon,” Phys. Rev. B., vol. 28, no. 4, pp. 1928-1934, 1983
[CrossRef]

A. Compaan and H. J. Trodahl, “Resonance Raman scattering in Si at elevated temperatures,” Phys. Rev. B., vol. 29, no. 2, pp. 793-801, 1984
[CrossRef]

Quantum Electronics, IEEE Journal of (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of parametric effects and stimulated Raman scattering in optical waveguide,” J. IEEE Quantum Elec., vol. 26, no. 10, pp. 1815-1820, 1990
[CrossRef]

Rev. Sci. Instrum. (1)

J. Touminen, T. Niemi, and H. Ludvigsen, “Wavelength reference for optical telecommunications based on a temperature-tunable silicon etalon,” Rev. Sci. Instrum., vol. 74, no. 8, pp. 3620-3623, 2003
[CrossRef]

Scripta MATERIALIA (1)

J. Niu, J. Sha, and D. Yang, “Temperature dependence of first-order Raman scattering in silicon nanowire,” Scrip. Mat., vol. 55, pp. 183-186, 2006
[CrossRef]

Selected Topics in Quantum Electronics, IEEE Journal of (2)

R. Soref, “The past, present, and future of silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 6, pp. 1678-1687, 2006
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 3, pp. 412-421, 2006
[CrossRef]

Other (7)

G. T. Reed and A. P. Knights, Silicon Photonics - An Introduction, (John Wiley & Sons, NJ, 2004)

G. P. Agrawal, Nonlinear Fiber Optics, 3rded., (Academic Press, San Diego, 2002)

Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)

C. Kittel, Introduction to Solid State Physics, 8th ed, (John Wiley & Sons, Hoboken, NJ, 2005)

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed., (Springer-Verlag, Berlin, 2001)

R. W. Boyd, Nonlinear Optics, 2nded., (Academic Press, San Diego, 2003

L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.