Abstract

We have developed a compact and cost-effective camera module on the basis of wafer-scale-replica processing. A multiple-layered structure of several aspheric lenses in a mobile-phone camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. This wafer-scale processing leads to at least 95% yield in mass-production, and potentially to a very slim phone with camera-module less than 2 mm in thickness. We have demonstrated a VGA camera module fabricated by the wafer-scale-replica processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having <TEX>$230{\mu}m$</TEX> sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in orderto achieve a higher resolution in wafer-scaled lenses for mobile-phone camera modules.

© 2006 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |

  1. H. S. Lee, S.-K. Lee, T. H. Kwon, and S. S. Lee, "Microlenses array fabrication by hot embossing process," Optical MEMs, 2002 Conference Digest. 2002 IEEE/LEOS International Conference, vol. 73, 2002
    [CrossRef]
  2. S. I. Kang, "Replication technology for micro/ nano optical components," Jpn. J, Appl. Phys., vol. 43, no. 5706, 2004
    [CrossRef]
  3. S. D. Fantone, "Replication optical surfaces using UV curing cements: a method," Appl. Opt., vol. 22, no. 764, 1983
  4. J. J. M. Braat, A. Smid, and M. M. B. Wijnakker, "Design and production technology of replicated aspheric objective lenses for optical disk system," Appl. Opt., vol. 24, no. 1853, 1985
    [CrossRef]
  5. R. J. M. Zwiers and G. C. M. Dortant, "Aspherical lenses produced by a fast high-precision replication process using UV-curable coatings," Appl. Opt., vol. 24, no. 4483, 1985
    [CrossRef]
  6. H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng., vol. 43, no. 2575, 2004
    [CrossRef]
  7. T. Shioda, "Fluorinated polyimide waveguide fabricated using replication process with antisticking layer," Jpn. J. Appl. Phys., vol. 41, no. 1379, 2002
    [CrossRef]
  8. J. L. C. Foneseca, S. Tasker, D. C. Apperley, and J. P. S. Badyal, "Plasma-enhanced chemical vapor deposition of organosilicon materials: A comparison of hexamethyl- disilane and tetramethylsilane precursors," Micromolecules, vol. 29, no. 1705, 1996
    [CrossRef]
  9. Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, "Nano-imprint lithography using replicated mold by Ni electroforming," Jpn. J. Appl. Phys., vol. 41, no. 4186, 2002
    [CrossRef]
  10. B. Harden, A. Kathman, and M. Feldman (Digital Optics Corporation), "Method of dicing wafer level integrated multiple optical elements," US Patent 6,096,155, 1 Aug., 2000
  11. E. M. Wolterink, G. M. Dohmen, A. F. M. Sander, A. G. Van Der Sijde, L. De Bruin, E. H. Groot, and A. P. M. Van Arendonk (Philips Electronics), "Camera device, method of manufacturing a camera device, wafer scale package," PCT WO 2004/027880, 1 April, 2004
  12. D. D. Do, N. Kim, K. Y. Lee, and S. H. Jeon, "Three-beam apodization in photopolymer," J. Opt. Soc. Kor., Vol. 9, No.2, pp. 59-63, 2005
    [CrossRef]

2005 (1)

D. D. Do, N. Kim, K. Y. Lee, and S. H. Jeon, "Three-beam apodization in photopolymer," J. Opt. Soc. Kor., Vol. 9, No.2, pp. 59-63, 2005
[CrossRef]

2004 (2)

S. I. Kang, "Replication technology for micro/ nano optical components," Jpn. J, Appl. Phys., vol. 43, no. 5706, 2004
[CrossRef]

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng., vol. 43, no. 2575, 2004
[CrossRef]

2002 (3)

T. Shioda, "Fluorinated polyimide waveguide fabricated using replication process with antisticking layer," Jpn. J. Appl. Phys., vol. 41, no. 1379, 2002
[CrossRef]

Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, "Nano-imprint lithography using replicated mold by Ni electroforming," Jpn. J. Appl. Phys., vol. 41, no. 4186, 2002
[CrossRef]

H. S. Lee, S.-K. Lee, T. H. Kwon, and S. S. Lee, "Microlenses array fabrication by hot embossing process," Optical MEMs, 2002 Conference Digest. 2002 IEEE/LEOS International Conference, vol. 73, 2002
[CrossRef]

2000 (1)

B. Harden, A. Kathman, and M. Feldman (Digital Optics Corporation), "Method of dicing wafer level integrated multiple optical elements," US Patent 6,096,155, 1 Aug., 2000

1996 (1)

J. L. C. Foneseca, S. Tasker, D. C. Apperley, and J. P. S. Badyal, "Plasma-enhanced chemical vapor deposition of organosilicon materials: A comparison of hexamethyl- disilane and tetramethylsilane precursors," Micromolecules, vol. 29, no. 1705, 1996
[CrossRef]

1985 (2)

J. J. M. Braat, A. Smid, and M. M. B. Wijnakker, "Design and production technology of replicated aspheric objective lenses for optical disk system," Appl. Opt., vol. 24, no. 1853, 1985
[CrossRef]

R. J. M. Zwiers and G. C. M. Dortant, "Aspherical lenses produced by a fast high-precision replication process using UV-curable coatings," Appl. Opt., vol. 24, no. 4483, 1985
[CrossRef]

1983 (1)

S. D. Fantone, "Replication optical surfaces using UV curing cements: a method," Appl. Opt., vol. 22, no. 764, 1983

Appl. Opt. (1)

S. D. Fantone, "Replication optical surfaces using UV curing cements: a method," Appl. Opt., vol. 22, no. 764, 1983

Applied Optics (2)

J. J. M. Braat, A. Smid, and M. M. B. Wijnakker, "Design and production technology of replicated aspheric objective lenses for optical disk system," Appl. Opt., vol. 24, no. 1853, 1985
[CrossRef]

R. J. M. Zwiers and G. C. M. Dortant, "Aspherical lenses produced by a fast high-precision replication process using UV-curable coatings," Appl. Opt., vol. 24, no. 4483, 1985
[CrossRef]

Japanese Journal of Applied Physics (3)

S. I. Kang, "Replication technology for micro/ nano optical components," Jpn. J, Appl. Phys., vol. 43, no. 5706, 2004
[CrossRef]

T. Shioda, "Fluorinated polyimide waveguide fabricated using replication process with antisticking layer," Jpn. J. Appl. Phys., vol. 41, no. 1379, 2002
[CrossRef]

Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, "Nano-imprint lithography using replicated mold by Ni electroforming," Jpn. J. Appl. Phys., vol. 41, no. 4186, 2002
[CrossRef]

Journal of the Optical Society of Korea (1)

D. D. Do, N. Kim, K. Y. Lee, and S. H. Jeon, "Three-beam apodization in photopolymer," J. Opt. Soc. Kor., Vol. 9, No.2, pp. 59-63, 2005
[CrossRef]

Micromolecules (1)

J. L. C. Foneseca, S. Tasker, D. C. Apperley, and J. P. S. Badyal, "Plasma-enhanced chemical vapor deposition of organosilicon materials: A comparison of hexamethyl- disilane and tetramethylsilane precursors," Micromolecules, vol. 29, no. 1705, 1996
[CrossRef]

Optical Engineering (1)

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng., vol. 43, no. 2575, 2004
[CrossRef]

Optical MEMs, 2002. Conference Digest. 2002 IEEE/LEOS International Conference (1)

H. S. Lee, S.-K. Lee, T. H. Kwon, and S. S. Lee, "Microlenses array fabrication by hot embossing process," Optical MEMs, 2002 Conference Digest. 2002 IEEE/LEOS International Conference, vol. 73, 2002
[CrossRef]

Other (2)

B. Harden, A. Kathman, and M. Feldman (Digital Optics Corporation), "Method of dicing wafer level integrated multiple optical elements," US Patent 6,096,155, 1 Aug., 2000

E. M. Wolterink, G. M. Dohmen, A. F. M. Sander, A. G. Van Der Sijde, L. De Bruin, E. H. Groot, and A. P. M. Van Arendonk (Philips Electronics), "Camera device, method of manufacturing a camera device, wafer scale package," PCT WO 2004/027880, 1 April, 2004

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.