Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Concentration dependence of two-photon absorption in PMMA polymeric films doped with rhodamine laser dyes

Abstract

We have studied poly(methyl methacrylate) (PMMA) films doped with rhodamine 6G and rhodamine B laser dyes as potential nonlinear material components for nanophotonics. For both dyes, the optimal concentrations, at which the emission excited via the two-photon-absorption (TPA) process is maximized, have been determined. Despite relatively large values of TPA cross sections obtained in this study, the characteristic pumping densities needed to observe pronounced nonlinear effects substantially exceed the laser damage threshold for Au or alternative plasmonic materials. This makes the studied laser dyes unsuitable for some of the intended nanophotonics applications.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.