Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared

Not Accessible

Your library or personal account may give you access

Abstract

We investigated the concept of a 1D layered structure for resonant selective thermal emission by excitation Tamm plasmon polaritons (TPPs). The modeled and simulated TPP structures for the mid-IR spectral region yield a promising approach for integrated sensing applications. In particular, the TPP structure is composed of an aperiodic multilayer stack of dielectric layers (silicon and silica) on a planar metallic surface acting as a heater and thus emitter for thermal radiation. By varying the layer depths, this design is highly optimizable for individual specifications, such as for enhancing the thermal emittance near to unity around a target wavelength and achieving a resonance with high Q-factor. Here, for demonstration purposes we chose λ=4.26μm as the target emission wavelength (corresponding to a major CO2 absorption line). However, considering a larger spectral range within the mid-IR region, parasitic resonances emerge in a more or less unpredictable manner and lead to multiband emission. A transfer matrix approach and genetic algorithm (GA) optimization were used to identify feasible stack configurations and characterize the behavior of parasitic resonances. In order to analyze and control the emergence of parasitic emission, different parameters characterizing the stack–metal composition were set. In particular, we found that keeping constraints on the number of dielectric layers and their individual thicknesses allows effective control of parasitic emission while also facilitating modern microlayer fabrication processes. Even though those constraints can hamper the enhancement of the Q-factor at the target resonance, highly performant configurations and parameters for the TPP structures could be identified. Each configuration corresponds to a particular choice of substrate metals (Ag or W), number of layers, and individual layer thicknesses. The behavior of the target and the parasitic resonances was discussed by using concepts of topological photonics and lumped parameter models.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadband Tamm plasmon polariton

Andrey M. Vyunishev, Rashid G. Bikbaev, Sergey E. Svyakhovskiy, Ivan V. Timofeev, Pavel S. Pankin, Stanislav A. Evlashin, Stepan Ya. Vetrov, Sergey A. Myslivets, and Vasily G. Arkhipkin
J. Opt. Soc. Am. B 36(8) 2299-2305 (2019)

Absorption enhancement in monolayer graphene using Tamm plasmon polaritons

Partha Sona Maji and Ritwick Das
OSA Continuum 1(2) 392-400 (2018)

Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton

Jing Han, Yabin Shao, Chunyu Chen, Jun Wang, Yang Gao, and Yachen Gao
Opt. Express 29(10) 15228-15238 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.