Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-dielectric structure for trapping nanoparticles via light funneling and nanofocusing

Not Accessible

Your library or personal account may give you access

Abstract

We propose a dielectric structure which focuses laser light well beyond the diffraction limit and thus considerably enhances the exerted optical trapping force upon dielectric nanoparticles. Although the structure supports a Fabry–Perot resonance, it actually acts as a nanoantenna in that the role of the resonance is to funnel the laser light into the structure. In comparison with the lens illuminating the structure, the proposed structure offers roughly a 10,000-fold enhancement in the trapping force—part of this enhancement comes from an 80-fold enhancement in the field intensity, whereas the remaining comes from a 130-fold enhancement in the normalized gradient of the field intensity (viz., the gradient of the field intensity divided by the field intensity). Also, the proposed structure offers roughly a 100-fold enhancement in the depth of the trapping potential. It is noteworthy that “self-induced back-action trapping” (SIBA), which has recently been the focus of interest in the context of optical resonators, does not take place in the proposed resonator. In this paper, we also point out some misconceptions about SIBA together with some hitherto unappreciated subtleties of the dipole approximation.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films

Punnag Padhy, Mohammad Asif Zaman, Paul Hansen, and Lambertus Hesselink
Opt. Express 25(21) 26198-26214 (2017)

Parallel trapping of multiple nanoparticles using a quasi-bound state in the continuum mode

Jinzhi Wang, Zhe Han, Chao Wang, and Huiping Tian
J. Opt. Soc. Am. B 39(9) 2356-2361 (2022)

All-optical trapping, relocation, and manipulation of nanoparticles using SOI ring resonators

Mahdi Sahafi and Amir Habibzadeh-Sharif
J. Opt. Soc. Am. B 36(8) 2178-2183 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved