O. Reynet and O. Acher, “Voltage controlled
metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]
D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic
quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).
P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting
metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise
to nonlinearity in superconducting resonators,” Phys. Rev.
B 84, 104515 (2011).
[Crossref]
S. M. Anlage, “The physics and applications of superconducting
metamaterials,” J. Opt. 13, 024001 (2011).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]
M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting
metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator
strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear
metamaterials via near field interactions: a review,” J. Infrared
Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring
resonator and meanderline structures as quarter-wave plates at terahertz
frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong
interference effects in highly absorbing media,” Nat.
Mater. 12, 20–24 (2013).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using
superconducting circuits with Josephson junctions,” Appl. Phys.
Lett. 102, 062601 (2013).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong
interference effects in highly absorbing media,” Nat.
Mater. 12, 20–24 (2013).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
H. T. Chen, “Active terahertz metamaterial
devices,” Nature 444, 597–600 (2006).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, “Interference theory of metamaterial perfect
absorbers,” Opt. Express 20, 7165–7172 (2012).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial
absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on
the superconducting transition in
YBa2Cu3O7-δ,” Phys. Rev.
Lett. 72, 752–755 (1994).
[Crossref]
G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz
superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz
superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear
metamaterials via near field interactions: a review,” J. Infrared
Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring
resonator and meanderline structures as quarter-wave plates at terahertz
frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong
interference effects in highly absorbing media,” Nat.
Mater. 12, 20–24 (2013).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field
interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency
and absorption with dressed superconducting qubits,” Phys. Rev.
A 81, 063823 (2010).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic
metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting
metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using
superconducting circuits with Josephson junctions,” Appl. Phys.
Lett. 102, 062601 (2013).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong
interference effects in highly absorbing media,” Nat.
Mater. 12, 20–24 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator
strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear
metamaterials via near field interactions: a review,” J. Infrared
Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic
metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]
N. I. Zheludev and Y. S. Kivshar, “From metamaterials to
metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]
D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field
interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]
M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on
the superconducting transition in
YBa2Cu3O7-δ,” Phys. Rev.
Lett. 72, 752–755 (1994).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for
large area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a
superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]
M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on
the superconducting transition in
YBa2Cu3O7-δ,” Phys. Rev.
Lett. 72, 752–755 (1994).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise
to nonlinearity in superconducting resonators,” Phys. Rev.
B 84, 104515 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial
absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic
metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]
D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field
interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz
superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave
absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency
and absorption with dressed superconducting qubits,” Phys. Rev.
A 81, 063823 (2010).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz
superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and
broadside-coupled split ring resonators for metamaterial design—theory and
experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]
R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and
broadside-coupled split ring resonators for metamaterial design—theory and
experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and
broadside-coupled split ring resonators for metamaterial design—theory and
experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and
broadside-coupled split ring resonators for metamaterial design—theory and
experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial
absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic
quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
H. Ian, Y.-X. Liu, and F. Nori, “Tunable electromagnetically induced transparency
and absorption with dressed superconducting qubits,” Phys. Rev.
A 81, 063823 (2010).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
J. Orenstein, J. Bokor, E. Budiarto, J. Corson, R. Mallozzi, I. Bozovic, and J. N. Eckstein, “Nonlinear electrodynamics in cuprate
superconductors,” Physica C: Supercond. 282–287, 252–255 (1997).
[Crossref]
M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting
metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]
J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic
metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial
absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave
absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial
absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
J. B. Pendry, “Negative refraction makes a perfect
lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
M. N. Kunchur, D. K. Christen, C. E. Klabunde, and J. M. Phillips, “Pair-breaking effect of high current densities on
the superconducting transition in
YBa2Cu3O7-δ,” Phys. Rev.
Lett. 72, 752–755 (1994).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic
metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]
M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic
metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]
D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field
interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]
O. Reynet and O. Acher, “Voltage controlled
metamaterial,” Appl. Phys. Lett. 84, 1198–1200 (2004).
[Crossref]
M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting
metamaterials,” Appl. Phys. Lett. 87, 034102 (2005).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial
absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
G. F. Saracila and M. N. Kunchur, “Ballistic acceleration of a supercurrent in a
superconductor,” Phys. Rev. Lett. 102, 077001 (2009).
[Crossref]
G. Scalari, C. Maissen, S. Cibella, R. Leoni, and J. Faist, “High quality factor, fully switchable terahertz
superconducting metasurface,” Appl. Phys. Lett. 105, 261104 (2014).
[Crossref]
N. Klein, H. Chaloupka, G. Müller, S. Orbach, H. Piel, B. Roas, L. Schultz, U. Klein, and M. Peiniger, “The effective microwave surface impedance of high
Tc thin films,” J. Appl. Phys. 67, 6940–6945 (1990).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator
strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic
metamaterials,” Nat. Mater. 11, 30–33 (2012).
[Crossref]
D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field
interaction,” Phys. Rev. B 82, 155128 (2010).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using
superconducting circuits with Josephson junctions,” Appl. Phys.
Lett. 102, 062601 (2013).
[Crossref]
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial
absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial
absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave
frequencies,” Science 314, 977–980 (2006).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator
strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring
resonator and meanderline structures as quarter-wave plates at terahertz
frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring
resonator and meanderline structures as quarter-wave plates at terahertz
frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials:
theoretical and experimental investigations,” Phys. Rev.
B 75, 041102 (2007).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic
quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and
quasiparticle dynamics in
YBa2Cu3O7-δ,” Phys. Rev.
B 63, 140502 (2001).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, “Multistability and switching in a superconducting
metamaterial,” Nat. Commun. 5, 3730 (2014).
P. Jung, A. V. Ustinov, and S. M. Anlage, “Progress in superconducting
metamaterials,” Supercond. Sci. Technol. 27, 073001 (2014).
[Crossref]
P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, “Low-loss tunable metamaterials using
superconducting circuits with Josephson junctions,” Appl. Phys.
Lett. 102, 062601 (2013).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise
to nonlinearity in superconducting resonators,” Phys. Rev.
B 84, 104515 (2011).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative
permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]
C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave
absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, and J. Lu, “Terahertz-field-induced insulator-to-metal
transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[Crossref]
S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, C. Ludwig, F. F. Balakirev, H. U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature
superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[Crossref]
G. P. Williams, “Filling the THz gap—high power sources and
applications,” Rep. Prog. Phys. 69, 301–326 (2006).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep
subwavelength low-permittivity films,” Phys. Rev. B 90, 085411 (2014).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
N. K. Grady and B. G. Perkins, H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, “Nonlinear high-temperature superconducting
terahertz metamaterials,” New J. Phys. 15, 105016 (2013).
[Crossref]
H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature
superconducting terahertz metamaterials,” Phys. Rev.
Lett. 105, 247402 (2010).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Nonlinear response of superconducting NbN thin
film and NbN metamaterial induced by intense terahertz pulses,” New J. Phys. 15, 055017 (2013).
[Crossref]
C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting
metamaterials,” Appl. Phys. Lett. 102, 081121 (2013).
[Crossref]
A. Glossner, C. Zhang, S. Kikuta, I. Kawayama, H. Murakami, P. Müller, and M. Tonouchi, “Cooper pair breakup in YBCO under strong terahertz
fields,” arXiv:1205.1684 (2012).
D. Zhang, M. Trepanier, O. Mukhanov, and S. M. Anlage, “Tunable broadband transparency of macroscopic
quantum superconducting metamaterials,” Phys. Rev. X 5, 041045 (2015).
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor
metamaterial,” Appl. Phys. Lett. 97, 071102 (2010).
[Crossref]
H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect
absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
[Crossref]
G. R. Keiser, H. R. Seren, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Structural control of metamaterial oscillator
strength and electric field enhancement at terahertz frequencies,” Appl. Phys. Lett. 105, 081112 (2014).
[Crossref]
G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, “Towards dynamic, tunable, and nonlinear
metamaterials via near field interactions: a review,” J. Infrared
Millim. Terahertz Waves 34, 709–723 (2013).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
G. R. Keiser, A. C. Strikwerda, K. Fan, V. Young, X. Zhang, and R. D. Averitt, “Decoupling crossover in asymmetric broadside
coupled split-ring resonators at terahertz frequencies,” Phys.
Rev. B 88, 024101 (2013).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with
metamaterials,” Opt. Express 19, 21620–21626 (2011).
[Crossref]
A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring
resonator and meanderline structures as quarter-wave plates at terahertz
frequencies,” Opt. Express 17, 136–149 (2009).
[Crossref]
H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, and R. Averitt, “Reconfigurable terahertz
metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]
H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz
metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
K. Fan, X. Zhao, J. Zhang, K. Geng, G. R. Keiser, H. R. Seren, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically tunable terahertz metamaterials on
highly flexible substrates,” IEEE Trans. Terahertz Sci.
Technol. 3, 702–708 (2013).
[Crossref]
K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhang, K. A. Nelson, and R. D. Averitt, “Nonlinear terahertz metamaterials via
field-enhanced carrier dynamics in GaAs,” Phys. Rev.
Lett. 110, 217404 (2013).
[Crossref]
N. I. Zheludev and Y. S. Kivshar, “From metamaterials to
metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]
J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic
metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in
the near-infrared,” Sci. Rep. 5, 12788 (2015).
[Crossref]
W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using
micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]
Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, and D. L. Kwong, “A micro machined reconfigurable metamaterial via
reconfiguration of asymmetric split-ring resonators,” Adv. Funct.
Mater. 21, 3589–3594 (2011).
[Crossref]
C. Kurter, P. Tassin, A. P. Zhuravel, L. Zhang, T. Koschny, A. V. Ustinov, C. M. Soukoulis, and S. M. Anlage, “Switching nonlinearity in a
superconductor-enhanced metamaterial,” Appl. Phys. Lett. 100, 121906 (2012).
[Crossref]
C. Kurter, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Microscopic examination of hot spots giving rise
to nonlinearity in superconducting resonators,” Phys. Rev.
B 84, 104515 (2011).
[Crossref]
M. C. Ricci, X. Hua, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and S. M. Anlage, “Tunability of superconducting
metamaterials,” IEEE Trans. Appl. Supercond. 17, 918–921 (2007).
[Crossref]