Abstract

We study the emission behavior of an electric dipolar nano-emitter coupled with a disk–ring nanostructure (DRN) that sustains multiple plasmonic Fano resonances. The emitter–DRN electromagnetic coupling efficiency strongly depends on the relative position of the nano-emitter and the DRN, which determines whether the multiple Fano interactions are visibly activated. More specifically, for longitudinal polarization, the multiple Fano resonances are pronounced when the nano-emitter is at the outer apex of the disk or at the gap center of the DRN, observable in the far-field and/or near-field characteristics. However, no obvious Fano feature shows up when the nano-emitter is near the outer apex of the ring. For the case in which the nano-emitter oscillates vertically with respect to the DRN axis, Fano resonance is dramatic only when the nano-emitter is inside the gap of the DRN. We show that the cascading amplification of the dipole moment by the nanodisk is crucial for the excitation of the multiple Fano resonances. Our results are useful in engineering plasmon-modified optical spectroscopy and photon emission control, particularly in resonant plasmonic heterostructures.

© 2014 Optical Society of America

1. INTRODUCTION

Optical single quantum emitter (or nano-emitter), such as excitation in J-aggregates, dye molecules, or quantum dots, is the key element in quantum information and sensing [1,2], and the modifiability of its emission properties by plasmonic nanostructures is an interesting subject [3,4]. Some single-molecule experiments that focus on the resonant coupling of emitters with plasmonic modes in metallic nanostructures have observed that the photoluminescence of a nano-emitter can be either enhanced or quenched, depending on the working frequency, the polarization, and the distance between the nano-emitter and metal [5,6], with concomitant changes in the excited state lifetime [7,8]. In addition to these fundamental breakthroughs, recent progress in nanotechnology enables the introduction of plasmon-enhanced luminescence in various applications, e.g., for enhancing the brightness of technologically important light emitters [9], or for enhancing emission in a polarization-selective way [10]. Besides, plasmon-enhanced luminescence has great potential for sensing applications and for improving the light-harvesting capabilities of solar cells [11]. Despite of the numerous potential applications, there are still many issues to be explored regarding the emission modification by exotic hybridized plasmon modes or collective surface plasmon polaritons in the weak interaction regime, even within the framework of classical electrodynamics. Emitter–plasmon coupling in the strong interaction regime requires a more comprehensive treatment such as the time-dependent density functional theory in quantum electrodynamics [12].

Resonance-modified spontaneous emission in plasmonic heterostructures is of particular interest. The resonant modes in such systems are usually hybridized, which results in symmetric or antisymmetric modes that are of super-radiative or subradiative properties [13]. The spectrum and radiation patterns of such systems are dramatically different from their homogenous counterparts. This makes them essentially unique and useful in various plasmon-associated applications, such as high-sensitivity bio-sensing [14], sharp-band spectral selectivity [15], and beam filtering and steering [16].

Fano resonance is a type of resonance discovered by Fano in a quantum mechanical study of the autoionizing states of atoms [17]. Different from Lorentz-type resonance, Fano resonance generally exhibits a distinctly asymmetric line shape. The microscopic origin of Fano resonance arises from the constructive and destructive interference of a narrow (discrete) resonance state with a broad spectral line or continuum [18]. Over the past few years, Fano resonance has been observed in numerous plasmonic nanostructures, such as single metallic particles [19], metallic dimers [20], nanoparticle clusters [21,22], disk–ring nanostructures (DRNs) [23,24], periodic arrays [25,26], and nonlinear lattices [27]. Fano resonance in plasmonic heterostructures has been widely explored and is expected to be useful in chemical and biological sensors [28], surface-enhanced Raman scattering (SERS) [29], and nonlinear optics (such as impulsive stimulated Raman scattering [30]), due to its fascinating optical characteristics [27]. In most theoretical and experimental scenarios, the excitation source is often considered as plane wave (i.e., far-field illumination), and the Fano resonance features are generally illustrated by far-field (e.g., extinction, absorption, and/or scattering cross section) spectra for finite-sized plasmonic structures, or by transmission/reflection spectra for periodic plasmonic structures. The use of Fano resonance structures to tailor the emission properties of a nano-emitter shall be of both fundamental and application interests, but remains largely unexplored [13].

2. SYSTEM AND METHODS

In this paper, we study the modifications of radiative decay rate and nonradiative decay rate for a nano-emitter that is in near proximity to a silver heterodimer of a DRN that supports multiple Fano resonances [23]. As shown in Fig. 1, the prototype DRN consists of a nanodisk with diameter D1=140nm and a nanoring with outer diameter D2=300nm and inner diameter D3=260nm. The gap width g=20nm and the thickness t=60nm are used in the calculation, respectively. In the visible, the fundamental dipolar mode in the disk and the higher-order mode in the ring strongly hybridize, enabling dipole–multipole Fano features that can result in multiple asymmetric spectrum, as well as a transitional optical binding force effect [24]. The geometry, size, and gap of the DRN are crucial design parameters that can tune the resonance properties, which would certainly tailor the emission behaviors.

 

Fig. 1. Schematic figure of the disk–ring nanostructure. The position of the nano-emitter is labeled by P1, P2, and P3, representing the three typical cases.

Download Full Size | PPT Slide | PDF

We employ the finite element method (Comsol Multiphysics) to investigate the responses of a nano-emitter near such a DRN that is assumed freestanding in vacuum. (Note that putting the DRN in other dielectric media such as water may lead to red-shift of the resonances but would not change the physics reported here.) The optical constants of silver are taken from Johnson and Christy [31]. The nano-emitter (i.e., excitation source) is treated as a classical point dipole p0(t)=p0eiωt, at different locations (e.g., P1, P2, or P3 in Fig. 1), where ω is the oscillating angular frequency. The point-like dipole p0(t) is of no intrinsic losses. In response to the interaction with a neighboring structure, its radiative power can be calculated by the electric field E and magnetic field H,

Pr=12Re[Sr(E×H*)·ds],
where the integral surface Sr exclusively encloses the structure and the nano-emitter. The nonradiative power due to the ohmic loss in the structure can be calculated by [32]
Pnr=12Re[Snr(E×H*)·ds],
where Snr encloses only the structure of interest (i.e., the disk, the ring, or the whole DRN). The normalized radiative decay rate γr and nonradiative decay rate γnr for the full system are given by γr=Pr/P0 and γnr=Pnr/P0, respectively. Here P0=ω4|p0|2/12πε0c3 denotes the radiative power by the nano-emitter in the absence of any structure (e.g., in vacuum with permittivity ε0 and light speed c). We stress that the radiative and nonradiative decay rates correspond to the measures of scattering cross section and absorption cross section in the case of far-field excitation, respectively. On the other hand, since the disk response is dominated by its fundamental mode in the interested band, we calculate the induced dipole moment p via the induced current density J on the disk,
p=1iωVdiskJd3r.
The volume integration in Eq. (3) is carried over the whole disk exclusively, and it can be used to analyze the individual contributions of the disk in the DRN. It is noted that p is dominated by its component in the polarization direction.

3. RESULTS AND DISCUSSION

A. Case of Plane Wave Illumination

When the distance between a nano-emitter and an object goes to infinity, the situation can be regarded as a plane wave illumination. To better understand the radiative and nonradiative processes of a nano-emitter in the presence of the DRN, we first study the case of a plane wave at normal incidence. The incident light propagates along the +z axis and is polarized in the y axis (see Fig. 1). It is well known that the dipolar mode of the single disk can be efficiently excited by such a plane wave. The dipolar mode is often referred to as the “bright” mode in examining Fano phenomena [20,24]. The dashed line in Fig. 2(a) is the scattering spectrum of an isolated nanodisk (i.e., removing the ring in the DRN), with surface plasmon resonance (SPR) at λ=530nm. The induced dipole moment p on the disk, which is dominantly contributed by the y component in this case, is plotted in Fig. 2(b), and its phase ϕ in Fig. 2(c) by the dashed line. When the wavelength goes through the SPR, the phase ϕ is changed by π. Let us remark that ϕ is phase-advanced above the SPR frequency (shorter wavelengths) and phase-delayed below the SPR frequency. In fact, a coupled two-harmonic oscillator model shows that the dipole moment p might be written as [33]

p=fD2+iγDff2(fR2+iγRff2)(fD2+iγDff2)C2Ae,
where fD and γD are the resonance frequency and damping for the dark (nonradiative) mode, respectively, which cannot couple to the harmonic external field (i.e., the plane wave in this case). fR and γR represent those of the bright (radiative) mode, which can efficiently couple to the external field, and C is the interaction strength between the two oscillators. f and Ae are the driven frequency and amplitude of the external field. We note that the amplitude of the dipole moment p has a pronounced Fano profile. The Fano interaction can be more rigorously described by a generalized Fano formula within an ab initio electromagnetic theory [33].

For a single nanoring, we can excite its quadrupolar, hexapolar, and octupolar resonance modes, which are at λ=775, 583, and 497 nm, respectively, by a nearby nano-emitter [23,24]. These modes are referred to as “dark” because of their relatively higher quality factor and weak coupling to the external field. We note that these modes are the symmetric ones, while the antisymmetric modes in the ring fall in the shorter wavelength regime and are not considered here [34].

 

Fig. 2. Comparison between the DRN and an individual disk under plane wave illumination. (a) Scattering spectra of the DRN (black solid curve) and of the single disk (black dashed curve). (b) Dipole moment amplitude and (c) phase of the disk in the DRN (solid curve) and of the single disk (dashed curve).

Download Full Size | PPT Slide | PDF

In the DRN, the bright mode of the nanodisk is excited by two pathways: one directly from the incident light, and the other from the near field generated by the ring’s dark modes, which are not directly excited by the plane wave, but by the induced dipole in the disk. It is commonly believed that the destructive interference of the two pathways results in Fano resonance, leading to dips in the scattering spectrum [solid curve in Fig. 2(a)]. It is very interesting to see that the Fano dips are pronounced in both the scattering spectrum [solid curve in Fig. 2(a)] and the amplitude spectrum [solid curve in Fig. 2(b)] of the dipole moment p defined in Eq. (3). The phase ϕ of the y component py is plotted as a solid curve in Fig. 2(c). Notice that the phase jumps abruptly at the dipole–octupole and dipole–hexaple Fano dips [nearly zero SCS in Fig. 2(a)] at around λ=500 and 587 nm, respectively [23], quite similar to what happens in the classical model [35]. For the Fano dip at λ=778nm in Fig. 2(b), however, the phase jump is relatively weak. This is partially because the dipolar bright plasmon resonance (530nm) of the disk is spectrally far from the quadrupolar mode (775nm) of the nanoring and the destructive Fano interaction becomes much weaker.

B. Case for Longitudinal Polarization of a Nano-Emitter

It is worth noting that although the direct coupling between the dark mode and the far-field radiation is basically negligible in the case of plane wave illumination, it must be accounted for when considering dipole emission modification by the DRN. As a result, in the coupled oscillator model put forward in the Section 3.A, both of them are driven by the external field (electric dipole source), which is position dependent. In addition, the distance between the dipole source and the DRN affects their coupling efficiency dramatically [36]. Similar to the situation of plane wave illumination, here we consider the longitudinal polarization. Figures 3(a) and 3(b) show, respectively, the radiative and nonradiative decay rate spectra when the nano-emitter is placed at P1 (in the principle xoy plane) and 10 nm away from the disk boundary (see Fig. 1). There is discernible Fano profile appearing in the γr(DRN) spectrum [Fig. 3(a)], as well as in the spectrum of the disk dipole moment [Fig. 3(c)]. In this configuration, the dipolar plasmon mode of the nanodisk can be directly and efficiently excited by the nano-emitter, thus acting as a “bright” mode in terms of Fano interference. Although the high-order plasmon modes of the nanoring can be excited by a nearby electric dipole, the efficiency is relatively weak due to the large distance (170nm) between the nano-emitter and the ring. It is observed that the disk’s nonradiative decay rate γnr(D) [red circles in Fig. 3(b)] is comparable to that of the ring γnr(R) [brown squares in Fig. 3(b)] in the DRN. The ring’s high-order plasmon modes are regarded as “dark,” with respect to the nano-emitter in this case. Nevertheless, the high-order plasmon modes of the nanoring can couple with the nanodisk’s bright mode (or induced dipole on it) via strong near-field interactions. As a result, in Fig. 3(d) one can see fairly clear Fano-resonance-induced phase jump of the disk dipole moment p. The radiative decay rate spectrum γr(DRN) [black solid curve in Fig. 3(a)] shows that three Fano dips are at approximately λ=502, 590, and 778 nm. The Fano dips are very close to the ring’s dark mode resonance wavelengths [green dashed curve in Fig. 3(a)], as predicted in the classical model [34]. In addition, Fig. 3(b) plots the nonradiative decay rate spectrum γnr(DRN) (red solid curve) indicating that the hybridized plasmon resonance peaks are at around λ=503, 602, and 807 nm. The slight red-shift between the radiative decay rate dips and the nonradiative peaks is ascribed to the dissipation in the DRN [3739].

 

Fig. 3. Fano resonance spectrum with a nano-emitter placed at P1. (a) Normalized radiative decay rate γr and (b) nonradiative decay rate γnr of the DRN (solid curve), the disk and ring in the DRN (dotted), and the isolated disk and the ring (dashed). (c) Dipole moment amplitude and (d) corresponding dipole moment phase of the disk in the DRN (solid) and a single disk (dashed). We use symbols a, c, e, and g to label the peaks and b, d, and f to label the dips in the dipole moment amplitude curve of the disk in the DRN in (c).

Download Full Size | PPT Slide | PDF

Figure 4 shows the electric fields of the DRN corresponding to the four peaks in Fig. 3(c) at λ=486, 532, 619, and 820 nm (labeled by “a,” “c,” “e,” and “g”) and for the three Fano dips at λ=502, 590, and 778 nm (labeled by “b,” “d,” and “f”). One can observe that the dipole moment on the disk is substantially reduced by Fano interference at the Fano dips [see Figs. 4(b), 4(d), and 4(f)]. Notice that the near field around the disk is visibly small for these three cases. This is one of the typical consequences of Fano resonance and corroborates the fact that strong multiple Fano resonances happen in the DRN in this case.

 

Fig. 4. Near field for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)], which are marked by the corresponding symbols in Fig. 3(c). The field amplitude is in logarithmic scale.

Download Full Size | PPT Slide | PDF

Bigelow et al. recently showed that the electron energy loss spectroscopy and cathodoluminescence excited by an electronic beam are very sensitive to the relative position of the nanostructure, which supports Fano interference [40]. We expect similar characteristics in our system. We now consider the situation in which the nano-emitter is placed at P2, i.e., in the gap center of the DRN (see Fig. 1). In this configuration, the disk dipolar mode is still the bright mode because of the high coupling efficiency to the emitter source. Though the nonradiative decay rate γnr(DRN) is dominant in the DRN, it is seen that the quality factor Q, estimated from the linewidth of the resonance peaks of the ring’s higher-order plasmon modes (dark green dashed curve), is much larger than that of the disk dipolar mode (yellow dashed curve) in Fig. 5(a). The higher-order modes in the ring would thus be “dark” because of the direct but relatively weaker coupling to the nano-emitter. However, the higher-order modes can be affected by the induced dipole moment p in the disk, which substantially amplifies that of the nano-emitter. Therefore, Fano dips (marked as “b,” “d,” and “f”) in the dipole moment spectrum [solid curve in Fig. 5(c)] of the disk are obvious. It should be noted that the Fano dips and the Fano line shape are not as pronounced as in the previous case, reflected in both the radiative decay rate spectrum and the disk dipole moment spectrum; in this case the line profile appears to deviate greatly from the asymmetric Fano shape and resembles the Lorentzian symmetric shape [41]. In other words, the degree of asymmetry is reduced, and the Fano parameter decreases [13].

 

Fig. 5. Similar to Fig. 3, though with the nano-emitter placed the gap center of the DRN (i.e., P2 in Fig. 1).

Download Full Size | PPT Slide | PDF

Similar to the case of a nano-emitter at P1, Fig. 6 shows that the electric near field around the disk is heavily suppressed at the Fano dips at λ=486, 566, and 740 nm [see Figs. 6(b), 6(d), and 6(f)]. The near-field intensity is stronger for the dipole moment spectrum peaks at λ=457, 511, 606, and 808 nm, as shown in Figs. 6(a), 6(c), and 6(g), respectively. The situation is quite different, however, when the DRN is excited by a nano-emitter at P3 (see Fig. 1). In this configuration, the direct coupling between the disk’s dipolar mode and the nano-emitter exponentially weakens due to the larger separation and the ring as a metallic obstacle between them. The ring’s higher-order modes, as usual, remain weakly active to the nano-emitter excitation. Therefore, they are to a certain extent both “dark,” and no obvious Fano resonance would be expected in this configuration. Figure 7(d) shows that the dipole moment phase basically does not jump sharply in a narrow band. Rather than that, the unwrapped phase can be regarded as continuous, indicating no (or extremely weak) Fano resonance associated behavior. Corresponding, the radiative and nonradiative decay rates [Figs. 7(a) and 7(b)], as well as the induced dipole moment spectra [Fig. 7(c)], all look quite symmetrical around the peaks. This is very much like the case in Ref. [39]. Indeed, from the near-field distributions shown in Fig. 8, the electric field intensity near the disk is comparable for all peak and dip wavelengths, marked from “a” to “g” in Fig. 7(c). In this case, the disk remains nearly silent at all the wavelengths, as reflected by the amplitude of p in Fig. 7(c). Notice that the amplitude is much smaller than that in Fig. 5(c).

 

Fig. 6. Near-field amplitude for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 5(c). The field amplitude is in logarithmic scale. The field strength around the disk reflects the magnitude of the induced dipole moment on it.

Download Full Size | PPT Slide | PDF

 

Fig. 7. Similar to Fig. 3, though with the nano-emitter placed at the outer apex of the ring (i.e., P3 in Fig. 1).

Download Full Size | PPT Slide | PDF

 

Fig. 8. Near-field distributions for wavelengths at the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 7(c). The field amplitude is in logarithmic scale.

Download Full Size | PPT Slide | PDF

C. Case for Transverse Polarization of a Nano-Emitter

Next, we study the emission behavior when the emitter is transversely polarized, i.e., with polarization directed along the x axis. The results are shown in Fig. 9, which presents the optical spectra for the cases in which the nano-emitter is at P1, P2, and P3 in the three columns, respectively. Similar to the longitudinal case, the disk can directly and efficiently couple to the source when the nano-emitter is at P1. However, the near-field enhancement in the gap is much smaller in this situation [42], and the transverse near-field coupling between the disk dipole and the ring higher-order modes is approximately half that in the longitudinal case and is negative, making them not able to induce obvious Fano resonance [43].

 

Fig. 9. Optical spectra for the case of the nano-emitter oscillating along the x axis. (a), (b) Normalized decay rate (γr and γnr) and dipole moment amplitude, respectively, when the dipole emitter is at position P1. (c), (d) Same, for the case of the emitter at P2. (e), (f) Same, for the case of the emitter at P3.

Download Full Size | PPT Slide | PDF

This can be further confirmed by the nonradiative decay rate [Fig. 9(a)], the dipole spectrum of the disk in the DRN, and the dipole spectra of an isolated disk [Fig. 9(b)]. The spectra associated with the disk in presence and in absence of the ring have very similar line shapes, indicating that the interaction between the nano-emitter and the DRN is dominated by the dipolar mode of the disk.

In the dipole moment amplitude spectrum of the disk for the case in which the nano-emitter is at the gap center of the DRN, we can see mutipolar modes with clear Fano dips, which is like in the longitudinal case [Fig. 9(d)]. The source and the near field are strongly confined in the gap region in both configurations [44]. The electric field in the gap region is dramatically enhanced, and the nano-emitter couples to the disk dipolar mode more effectively than to the ring’s higher-order modes, making one “bright” and the others “dark.” As a result, Fano interference becomes pretty effective in this configuration.

However, when the nano-emitter is shifted to the apex near the ring (i.e., at P3 in Fig. 1), we do not observe clear Fano dips in the dipole moment spectrum [Fig. 9(f)]. In this case, it is anticipated that the disk dipolar mode and the ring’s higher-order modes are both “dark.” The excitation pathway from emitter bright mode dark mode bright mode does not exist, which prohibits constructive and/or destructive interference. We shall stress that the enhancement of decay rates for the dipole source being parallel to the axis of the DRN (longitudinal) is much larger than those in the transverse case [45].

D. Effect by z-Offset of the Nano-Emitter

To have a better physical understanding for the above results and to study the effect of the emitter-structure distance in more detail, we turn to the eigenmode pattern of the DRN. Without loss of generality, the first plasmon peak at λ1821nm in the longitudinal polarization is used as an example. Figures 10(a) and 10(b) show the electric field of this resonant mode. It is easy to understand that the decay rate enhancement maximizes when the nano-emitter is at the position of the strongest local field. For example, Fig. 10 intuitively tells that the enhancement for a nano-emitter at P3 is larger than in the case at P1, while both of them are smaller than in the case at P2. These results are correlated to the local density of states (LDOS), and we can find optimal position in terms of enhancing the overall decay rate and Purcell factor.

 

Fig. 10. Normalized electric field of eigenmode at the first plasmon peak (λ1). (a) Electric field distribution in the xoy plane. The field amplitude is in linear scale. (b) Electric field intensity along the axis of DRN.

Download Full Size | PPT Slide | PDF

Finally, we study the effect of emitter-structure distance, particularly in the yoz plane in view of the finite thickness of the DRN. The longitudinal movement of the emitter basically leads to monotonically varied decay rate. This characteristic is reported in the literature [36] and is also observed in our case (figures not shown). However, the transverse shift of the nano-emitter is of different consequences. Figure 11 shows the effects when the nano-emitter is shifted vertically off the DRN principle axis with the offset h=0–200 nm. We use λ1, λ2, λ3, and λ4 to label the peaks of the decay rate and plot them as a function of h in Figs. 11(b), 11(c), 11(e), 11(f), 11(h), and 11(i), corresponding to the cases in Figs. 11(a), 11(d), and 11(g). Notice that the peaks in the calculated decay rate nearly do not shift when h increases (see insets in each panel for cases of h=0nm and h=40nm). However, the decay rate enhancement is highly dependent on the vertical shift h, and their maximum values emerge when the emitter is close to the DRN upper edge, i.e., at h30nm. This is ascribed to the hot spots at this position, caused by the finite thickness of the DRN.

 

Fig. 11. Decay rate spectra dependence on the vertical offset h of the emitter for different x axis positions. The first column is for P1, the second column for P2, and the third column for P3.

Download Full Size | PPT Slide | PDF

To understand that visually, the electric field pattern of the corresponding eigenmode (same as in Fig. 10) on the yoz plane is shown in Fig. 12(a). More specifically, the electric field strength as a function of z is plotted in Fig. 12(b) for cut lines at P1, P2, and P3. All the three curves have their peaks near z=30nm, reasonably in accordance with the data in Fig. 11. The coincidence of the nano-emitter position for maximum decay rate and the maximum eigenmode field position is as expected in view of the LDOS, but should be carefully considered when finding the optimal situation in molecular fluorescence or single photon emission, particularly when the planar nanostructures are of finite thickness.

 

Fig. 12. Electric field of eigenmode at the first plasmon peak (λ1). (a) Eigenmode pattern in the yoz plane. The field amplitude is in linear scale. (b) Electric field with different h for the three configurations (emitter at P1, P2, and P3).

Download Full Size | PPT Slide | PDF

4. CONCLUSION

In summary, we have studied the interaction between a single nano-emitter and a prototype plasmonic DRN that sustains multiple Fano resonances. Depending on the direct coupling strength of the emitter to either the fundamental dipolar mode of the disk or the higher-order modes in the ring, the plasmonic hybridization between them is crucially dependent on the emitter position. Besides, since the polarization direction also influences the coupling strength, it also affects the emitters’ radiative and nonradiative decay rates. We explicitly demonstrate that when the nano-emitter is at the hot spot (which resides inside the gap, but near the upper and lower edges of the DRN) of the corresponding eigemode field pattern, the decay rate enhancement reaches maximum. These results may be useful in engineering plasmon-modified fluorescence spectroscopy and in single photon emission control.

ACKNOWLEDGMENTS

This work was supported by the NSFC (11274083), and the Shenzhen Municipal Science and Technology Plan (Nos. KQCX20120801093710373, JCYJ20120613114137248, and 2011PTZZ048). We acknowledge help from the National Supercomputer Shenzhen Center.

REFERENCES

1. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]  

2. H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013). [CrossRef]  

3. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008). [CrossRef]  

4. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013). [CrossRef]  

5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef]  

6. Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013). [CrossRef]  

7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef]  

8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]  

9. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006). [CrossRef]  

10. H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011). [CrossRef]  

11. Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

12. S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013). [CrossRef]  

13. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011). [CrossRef]  

14. X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006). [CrossRef]  

15. W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975). [CrossRef]  

16. Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014). [CrossRef]  

17. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]  

18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]  

19. Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014). [CrossRef]  

20. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013). [CrossRef]  

21. K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010). [CrossRef]  

22. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011). [CrossRef]  

23. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012). [CrossRef]  

24. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013). [CrossRef]  

25. B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013). [CrossRef]  

26. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010). [CrossRef]  

27. K. Choudhary, S. Adhikari, A. Biswas, A. Ghosal, and A. K. Bandyopadhyay, “Fano resonance due to discrete breather in nonlinear Klein–Gordon lattice in metamaterials,” J. Opt. Soc. Am. B 29, 2414–2419 (2012). [CrossRef]  

28. C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011). [CrossRef]  

29. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013). [CrossRef]  

30. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive simulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9, 2179–2189 (1992). [CrossRef]  

31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]  

32. J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013). [CrossRef]  

33. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011). [CrossRef]  

34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]  

35. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006). [CrossRef]  

36. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007). [CrossRef]  

37. J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013). [CrossRef]  

38. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011). [CrossRef]  

39. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]  

40. N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013). [CrossRef]  

41. N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014). [CrossRef]  

42. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013). [CrossRef]  

43. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012). [CrossRef]  

44. V. Giannini, J. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009). [CrossRef]  

45. L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
    [CrossRef]
  2. H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
    [CrossRef]
  3. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008).
    [CrossRef]
  4. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013).
    [CrossRef]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef]
  6. Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
    [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef]
  8. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  9. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
    [CrossRef]
  10. H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011).
    [CrossRef]
  11. Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).
  12. S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
    [CrossRef]
  13. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
    [CrossRef]
  14. X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
    [CrossRef]
  15. W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
    [CrossRef]
  16. Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014).
    [CrossRef]
  17. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  18. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]
  19. Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
    [CrossRef]
  20. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013).
    [CrossRef]
  21. K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
    [CrossRef]
  22. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
    [CrossRef]
  23. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012).
    [CrossRef]
  24. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
    [CrossRef]
  25. B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013).
    [CrossRef]
  26. B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
    [CrossRef]
  27. K. Choudhary, S. Adhikari, A. Biswas, A. Ghosal, and A. K. Bandyopadhyay, “Fano resonance due to discrete breather in nonlinear Klein–Gordon lattice in metamaterials,” J. Opt. Soc. Am. B 29, 2414–2419 (2012).
    [CrossRef]
  28. C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
    [CrossRef]
  29. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
    [CrossRef]
  30. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive simulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9, 2179–2189 (1992).
    [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  32. J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
    [CrossRef]
  33. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
    [CrossRef]
  34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  35. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
    [CrossRef]
  36. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
    [CrossRef]
  37. J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
    [CrossRef]
  38. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [CrossRef]
  39. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009).
    [CrossRef]
  40. N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
    [CrossRef]
  41. N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
    [CrossRef]
  42. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
    [CrossRef]
  43. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
    [CrossRef]
  44. V. Giannini, J. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009).
    [CrossRef]
  45. L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]

2014 (3)

Z. Cao, R. Lu, Q. Wang, N. Tessema, Y. Jiao, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Cyclic additional optical true time delay for microwave beam steering with spectral filtering,” Opt. Lett. 39, 3402–3405 (2014).
[CrossRef]

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

2013 (13)

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, ” Opt. Express 21, 6601–6608 (2013).
[CrossRef]

Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38, 4240–4243 (2013).
[CrossRef]

B. Y. Zhang and J. P. Guo, “Optical properties of a two-dimensional nanodisk array with super-lattice defects,” J. Opt. Soc. Am. B 30, 3011–3017 (2013).
[CrossRef]

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599–2606 (2013).
[CrossRef]

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

2012 (3)

2011 (6)

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

H. S. Ee, S. K. Kim, S. H. Kwon, and H. G. Park, “Design of polarization-selective light emitters using one-dimensional metal grating mirror,” Opt. Express 19, 1609–1616 (2011).
[CrossRef]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

B. Tang, L. Dai, and C. Jiang, “Transmission enhancement of slow light by a subwavelength plasmon-dielectric system,” J. Opt. Soc. Am. B 27, 2433–2437 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (5)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

2005 (1)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

2004 (1)

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

2003 (2)

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

1992 (1)

1975 (1)

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Adato, R.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Adhikari, S.

Agio, M.

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Altug, H.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Andreani, L. C.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Arju, N.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Bandyopadhyay, A. K.

Bao, K.

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Batteas, J. D.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Bigelow, N. W.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Biswas, A.

Blanco, L. A.

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Camden, J. P.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Cao, Z.

Chang, W. Y.

Chen, H. C.

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Chen, H. S.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Choudhary, K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D’Agostino, S.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Dai, L.

Denkova, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Dorpe, P. V.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Dougherty, T. P.

Du, X. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Ee, H. S.

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Gallinet, B.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Gammon, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Garíca de Abajo, F. J.

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Ghosal, A.

Giannini, V.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Guo, J. P.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Hao, Z. H.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Hong, M. H.

Jia, T. Q.

Jiang, C.

Jiang, C. Y.

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

Jiao, Y.

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Kaminski, F.

Katzer, D. S.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Khanikaev, A.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Khurgin, J. B.

Kiang, Y. W.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Kim, S. K.

Koonen, A. M. J.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Kuo, M. K.

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Kuo, Y.

Kuznetsov, A.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Kwon, S. H.

Lagae, L.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Lai, T.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Lee, L. P.

Li, X. Q.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Li, Z. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Liang, H. L.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Liaw, J. W.

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Liew, Y. F.

Lin, H. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Liu, H.

Liu, Y. P.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Lopez-Tejeira, F.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Lu, R.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Lukiyanchuk, B.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Martin, O. J. F.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

Masiello, D. J.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Mei, Z. X.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Mertens, H.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Mirin, N.

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Muskens, O. L.

Nelson, K. A.

Ng, B.

Nordlander, P.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Paniagua-Domínguez, R.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Park, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Park, H. G.

Park, Y.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Piermarocchi, C.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Pravitasari, A.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Qu, X. G.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Rahmani, M.

Raymond, J. E.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Rivas, J. G.

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Ross, B. M.

Sala, F. D.

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

Sánchez-Gil, J.

Sánchez-Gil, J. A.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Shah, N. C.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Sham, L. J.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Shvets, G.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Siegfried, T.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Sigg, H.

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

Son, D. H.

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

Soref, R. A.

Stark, W. S.

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

Steel, D.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Stievater, T. H.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Sun, G.

Sun, H. J.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Tang, B.

Tangdiongga, E.

Tavakkoli K. G., A.

Tessema, N.

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

van den Boom, H. P. A.

Van Duyne, R. P.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Vaschillo, A.

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Vercruysse, D.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Verellen, N.

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

Wang, Q.

Wang, Q. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Wang, Y.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Wei, W. L.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Wiederrecht, G. P.

Wu, C.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Wu, L.

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Wu, Y. R.

Wu, Y. W.

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Xiao, J. J.

Xu, Z. Z.

Yang, C. C.

Yang, Z. J.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Yanik, A. A.

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Yao, Y.

Zhang, B. Y.

Zhang, F. M.

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Zhang, H. M.

Zhang, Q.

Zhang, X. M.

Zhang, X. Y.

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Zhang, Y.

Zhang, Z. S.

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

ACS Nano (2)

Y. Park, A. Pravitasari, J. E. Raymond, J. D. Batteas, and D. H. Son, “Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots,” ACS Nano 7, 10544–10551 (2013).
[CrossRef]

N. W. Bigelow, A. Vaschillo, J. P. Camden, and D. J. Masiello, “Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers,” ACS Nano 7, 4511–4519 (2013).
[CrossRef]

Appl. Phys. A (1)

K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99, 081107 (2011).
[CrossRef]

J. Comp. Physiol. (1)

W. S. Stark, “Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in drosophlia,” J. Comp. Physiol. 96, 343–356 (1975).
[CrossRef]

J. Opt. Soc. Am. B (7)

Mater. Today (1)

H. J. Sun, L. Wu, W. L. Wei, and X. G. Qu, “Recent advances in graphene quantum dots for sensing,” Mater. Today 16(11), 433–442 (2013).
[CrossRef]

Nano Lett. (4)

B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Ångström scale with visible light,” Nano Lett. 13, 497–503 (2013).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef]

N. Verellen, F. Lopez-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. V. Dorpe, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14, 2322–2329 (2014).
[CrossRef]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[CrossRef]

Nanoscale (2)

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity,” Nanoscale 4, 5308–5311 (2012).
[CrossRef]

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[CrossRef]

Nanoscale Res. Lett. (1)

J. W. Liaw, H. C. Chen, and M. K. Kuo, “Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka,” Nanoscale Res. Lett. 8, 468 (2013).
[CrossRef]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

C. Wu, A. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (4)

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B 87, 205413 (2013).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[CrossRef]

L. A. Blanco and F. J. Garíca de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as a optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74, 259–266 (2006).
[CrossRef]

Plasmonics (1)

J. W. Liaw and C. Y. Jiang, “Plasmonic modes of Ag nanoshell excited by Bi-dipole,” Plasmonics 8, 255–265 (2013).
[CrossRef]

RSC Adv. (1)

Y. Wang, Y. P. Liu, T. Lai, H. L. Liang, Z. L. Li, Z. X. Mei, F. M. Zhang, A. Kuznetsov, and X. L. Du, “Selective nano-emitter fabricated by silver assisted chemical etch-back for multicrystalline solar cells,” RSC Adv. 3, 15483–15489 (2013).

Science (1)

X. Q. Li, Y. W. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003).
[CrossRef]

Vib. Spectrosc. (1)

X. Y. Zhang, N. C. Shah, and R. P. Van Duyne, “Sensitive and selective chem/bio sensing based on surface-enhanced Raman spectroscopy (SERS),” Vib. Spectrosc. 42, 2–8 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic figure of the disk–ring nanostructure. The position of the nano-emitter is labeled by P1, P2, and P3, representing the three typical cases.

Fig. 2.
Fig. 2.

Comparison between the DRN and an individual disk under plane wave illumination. (a) Scattering spectra of the DRN (black solid curve) and of the single disk (black dashed curve). (b) Dipole moment amplitude and (c) phase of the disk in the DRN (solid curve) and of the single disk (dashed curve).

Fig. 3.
Fig. 3.

Fano resonance spectrum with a nano-emitter placed at P1. (a) Normalized radiative decay rate γr and (b) nonradiative decay rate γnr of the DRN (solid curve), the disk and ring in the DRN (dotted), and the isolated disk and the ring (dashed). (c) Dipole moment amplitude and (d) corresponding dipole moment phase of the disk in the DRN (solid) and a single disk (dashed). We use symbols a, c, e, and g to label the peaks and b, d, and f to label the dips in the dipole moment amplitude curve of the disk in the DRN in (c).

Fig. 4.
Fig. 4.

Near field for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)], which are marked by the corresponding symbols in Fig. 3(c). The field amplitude is in logarithmic scale.

Fig. 5.
Fig. 5.

Similar to Fig. 3, though with the nano-emitter placed the gap center of the DRN (i.e., P2 in Fig. 1).

Fig. 6.
Fig. 6.

Near-field amplitude for the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 5(c). The field amplitude is in logarithmic scale. The field strength around the disk reflects the magnitude of the induced dipole moment on it.

Fig. 7.
Fig. 7.

Similar to Fig. 3, though with the nano-emitter placed at the outer apex of the ring (i.e., P3 in Fig. 1).

Fig. 8.
Fig. 8.

Near-field distributions for wavelengths at the peaks [(a), (c), (e), and (g)] and dips [(b), (d), and (f)] in Fig. 7(c). The field amplitude is in logarithmic scale.

Fig. 9.
Fig. 9.

Optical spectra for the case of the nano-emitter oscillating along the x axis. (a), (b) Normalized decay rate (γr and γnr) and dipole moment amplitude, respectively, when the dipole emitter is at position P1. (c), (d) Same, for the case of the emitter at P2. (e), (f) Same, for the case of the emitter at P3.

Fig. 10.
Fig. 10.

Normalized electric field of eigenmode at the first plasmon peak (λ1). (a) Electric field distribution in the xoy plane. The field amplitude is in linear scale. (b) Electric field intensity along the axis of DRN.

Fig. 11.
Fig. 11.

Decay rate spectra dependence on the vertical offset h of the emitter for different x axis positions. The first column is for P1, the second column for P2, and the third column for P3.

Fig. 12.
Fig. 12.

Electric field of eigenmode at the first plasmon peak (λ1). (a) Eigenmode pattern in the yoz plane. The field amplitude is in linear scale. (b) Electric field with different h for the three configurations (emitter at P1, P2, and P3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pr=12Re[Sr(E×H*)·ds],
Pnr=12Re[Snr(E×H*)·ds],
p=1iωVdiskJd3r.
p=fD2+iγDff2(fR2+iγRff2)(fD2+iγDff2)C2Ae,

Metrics