Abstract

The threshold for self-pumped optical phase conjugation by means of backward stimulated photorefractive scattering has been dramatically lowered by inserting a retroreflecting screen into the path of the beam after the beam leaves a BaTiO3 crystal. Stable reflectivities of as much as −60% and good phase-conjugate fidelity have been demonstrated in a crystal that has too low a gain–length product to exhibit unseeded backward stimulated scattering. Precise control of the threshold for stimulated scattering is demonstrated by adjusting the seed intensity. Reflectivity and fidelity are experimentally characterized at 515 nm as a function of the following parameters: pump and seed intensities, crystal angle with respect to the incident beam direction, crystal interaction length, crystal–lens separation, and aberration strength. Operation at 633, 730–800, and 839 nm is demonstrated also.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].
  2. B. Ya Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985).
    [CrossRef]
  3. T. Y. Chang, R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408 (1985).
    [CrossRef] [PubMed]
  4. A. V. Mamaev, V. V. Shkunov, “Interaction of counterpropagating waves and phase self-conjugation in a BaTiO3crystal,” Sov. J. Quantum Electron. 19, 1199 (1989).
    [CrossRef]
  5. M. L. Minden, R. A. Mullen, D. M. Pepper, “Coherent communication through water using a photorefractive retromodulator/conjugator,” in Conference on Lasers and Electro-optics, Vol. 7 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CFG2.
  6. M. Valley, G. Lombardi, R. Aprahamian, “Beam combination by stimulated Brillouin scattering,” J. Opt. Soc. Am. B 3, 1492 (1986).
    [CrossRef]
  7. R. H. Moyer, M. Valley, M. C. Cimolino, “Beam combination through stimulated Brillouin scattering,” J. Opt. Soc. Am. B 5, 2473 (1988).
    [CrossRef]
  8. P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
    [CrossRef]
  9. H. H. Barrett, S. F. Jacobs, “Retroreflective arrays as approximate phase conjugators,” Opt. Lett. 4, 190 (1979).
    [CrossRef] [PubMed]
  10. G. C. Valley, “Competition between forward- and backward-stimulated photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14 (1987);errata, 4, 934 (1987).
    [CrossRef]
  11. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46 (1982).
    [CrossRef]
  12. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
    [CrossRef]
  13. J. F. Lam, “Origin of base-conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909 (1985).
    [CrossRef]
  14. A. V. Mamaev, V. V. Shkunov, “Transient phase self-conjugation in a lithium niobate crystal,” Sov. J. Quantum Electron. 18, 892 (1988).
    [CrossRef]
  15. G. C. Valley, “Evolution of phase-conjugate waves in stimulated photorefractive backscattering,” J. Opt. Soc. Am. B 9, 1440 (1992).
    [CrossRef]
  16. D. Rytz, B. A. Wechsler, M. H. Garrett, C. C. Nelson, R. M. Schwartz, “Photorefractive properties of BaTiO:Co,” J. Opt. Soc. Am. B 7, 2245 (1990).
    [CrossRef]
  17. 3M Product Bulletin, 98-043904177-6(18.25)R1, Industrial Optics/3M, 3M Center 220-7W-06, St. Paul, Minn. 55144.
  18. G. J. Dunning, D. M. Pepper, M. B. Klein, “Control of self-pumped phase-conjugate reflectivity using incoherent erasure,” Opt. Lett. 15, 99 (1990).
    [CrossRef] [PubMed]
  19. J. J. Ottusch, D. A. Rockwell, “Stimulated Brillouin scattering phase conjugation fidelity fluctuations,” Opt. Lett. 16, 369 (1991).
    [CrossRef] [PubMed]
  20. V. E. Yashin, V. I. Kryzhanovskii, Opt. Spectrosc. 55, 101 (1983).
  21. G. G. Kochemasov, V. D. Nikolaev, Sov. J. Quantum Electron. 7, 60 (1977).
    [CrossRef]
  22. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  23. T. Y. Chang, “Non-linear optical studies of photorefractive barium titanate: parameter measurements and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).
  24. R. A. Mullen, “Photorefractive measurements of physical parameters,” in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 167.
    [CrossRef]
  25. R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
    [CrossRef]
  26. J. O. White, G. C. Valley, “Coupling pulsed dye oscillators using a phase conjugate resonator,” Appl. Opt. 27, 5026 (1988).
    [CrossRef] [PubMed]
  27. J. Feinberg, “Continuous-wave self-pumped phase conjugator with a wide field of view,” Opt. Lett. 8, 480 (1983).
    [CrossRef] [PubMed]

1992 (1)

1991 (1)

1990 (2)

1989 (1)

A. V. Mamaev, V. V. Shkunov, “Interaction of counterpropagating waves and phase self-conjugation in a BaTiO3crystal,” Sov. J. Quantum Electron. 19, 1199 (1989).
[CrossRef]

1988 (3)

1987 (2)

G. C. Valley, “Competition between forward- and backward-stimulated photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14 (1987);errata, 4, 934 (1987).
[CrossRef]

R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

1986 (1)

1985 (3)

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

J. F. Lam, “Origin of base-conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909 (1985).
[CrossRef]

T. Y. Chang, R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

1983 (2)

1982 (2)

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

1979 (1)

1977 (1)

G. G. Kochemasov, V. D. Nikolaev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

1972 (1)

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

Albers, J.

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

Aprahamian, R.

Barrett, H. H.

Chang, T. Y.

T. Y. Chang, R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

T. Y. Chang, “Non-linear optical studies of photorefractive barium titanate: parameter measurements and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

Cimolino, M. C.

Dunning, G. J.

Faizullov, F. S.

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

Feinberg, J.

Garrett, M. H.

Giuliano, C. R.

R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

Günter, P.

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Hellwarth, R. W.

T. Y. Chang, R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408 (1985).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Jacobs, S. F.

Klein, M. B.

Kochemasov, G. G.

G. G. Kochemasov, V. D. Nikolaev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Kryzhanovskii, V. I.

V. E. Yashin, V. I. Kryzhanovskii, Opt. Spectrosc. 55, 101 (1983).

Lam, J. F.

J. F. Lam, “Origin of base-conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909 (1985).
[CrossRef]

Lind, R. C.

R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

Lombardi, G.

Mamaev, A. V.

A. V. Mamaev, V. V. Shkunov, “Interaction of counterpropagating waves and phase self-conjugation in a BaTiO3crystal,” Sov. J. Quantum Electron. 19, 1199 (1989).
[CrossRef]

A. V. Mamaev, V. V. Shkunov, “Transient phase self-conjugation in a lithium niobate crystal,” Sov. J. Quantum Electron. 18, 892 (1988).
[CrossRef]

Minden, M. L.

M. L. Minden, R. A. Mullen, D. M. Pepper, “Coherent communication through water using a photorefractive retromodulator/conjugator,” in Conference on Lasers and Electro-optics, Vol. 7 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CFG2.

Moyer, R. H.

Mullen, R. A.

M. L. Minden, R. A. Mullen, D. M. Pepper, “Coherent communication through water using a photorefractive retromodulator/conjugator,” in Conference on Lasers and Electro-optics, Vol. 7 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CFG2.

R. A. Mullen, “Photorefractive measurements of physical parameters,” in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 167.
[CrossRef]

Nelson, C. C.

Nikolaev, V. D.

G. G. Kochemasov, V. D. Nikolaev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Ottusch, J. J.

Pepper, D. M.

G. J. Dunning, D. M. Pepper, M. B. Klein, “Control of self-pumped phase-conjugate reflectivity using incoherent erasure,” Opt. Lett. 15, 99 (1990).
[CrossRef] [PubMed]

M. L. Minden, R. A. Mullen, D. M. Pepper, “Coherent communication through water using a photorefractive retromodulator/conjugator,” in Conference on Lasers and Electro-optics, Vol. 7 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CFG2.

Pilipetsky, N. F.

B. Ya Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985).
[CrossRef]

Popovichev, V. I.

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

Ragulsky, V. V.

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

Rockwell, D. A.

Rytz, D.

Schwartz, R. M.

Shkunov, V. V.

A. V. Mamaev, V. V. Shkunov, “Interaction of counterpropagating waves and phase self-conjugation in a BaTiO3crystal,” Sov. J. Quantum Electron. 19, 1199 (1989).
[CrossRef]

A. V. Mamaev, V. V. Shkunov, “Transient phase self-conjugation in a lithium niobate crystal,” Sov. J. Quantum Electron. 18, 892 (1988).
[CrossRef]

B. Ya Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985).
[CrossRef]

Stephens, R. R.

R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Valley, G. C.

Valley, M.

Voit, E.

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

Wechsler, B. A.

White, J. O.

Ya Zel’dovich, B.

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

B. Ya Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985).
[CrossRef]

Yashin, V. E.

V. E. Yashin, V. I. Kryzhanovskii, Opt. Spectrosc. 55, 101 (1983).

Zha, M. Z.

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. R. Stephens, R. C. Lind, C. R. Giuliano, “Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers,” Appl. Phys. Lett. 50, 647 (1987).
[CrossRef]

J. F. Lam, “Origin of base-conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909 (1985).
[CrossRef]

J. Appl. Phys. (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

P. Günter, E. Voit, M. Z. Zha, J. Albers, “Self-pulsations and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210 (1985).
[CrossRef]

Opt. Lett. (6)

Opt. Spectrosc. (1)

V. E. Yashin, V. I. Kryzhanovskii, Opt. Spectrosc. 55, 101 (1983).

Pis’ma Zh. Eksp. Teor. Fiz. (1)

B. Ya Zel’dovich, V. I. Popovichev, V. V. Ragulsky, F. S. Faizullov, “On the relation between wave fronts of reflected and exciting radiation in stimulated Brillouin scattering,” Pis’ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) [JETP Lett. 15, 109 (1972)].

Sov. J. Quantum Electron. (3)

A. V. Mamaev, V. V. Shkunov, “Interaction of counterpropagating waves and phase self-conjugation in a BaTiO3crystal,” Sov. J. Quantum Electron. 19, 1199 (1989).
[CrossRef]

A. V. Mamaev, V. V. Shkunov, “Transient phase self-conjugation in a lithium niobate crystal,” Sov. J. Quantum Electron. 18, 892 (1988).
[CrossRef]

G. G. Kochemasov, V. D. Nikolaev, Sov. J. Quantum Electron. 7, 60 (1977).
[CrossRef]

Other (5)

3M Product Bulletin, 98-043904177-6(18.25)R1, Industrial Optics/3M, 3M Center 220-7W-06, St. Paul, Minn. 55144.

T. Y. Chang, “Non-linear optical studies of photorefractive barium titanate: parameter measurements and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

R. A. Mullen, “Photorefractive measurements of physical parameters,” in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), p. 167.
[CrossRef]

M. L. Minden, R. A. Mullen, D. M. Pepper, “Coherent communication through water using a photorefractive retromodulator/conjugator,” in Conference on Lasers and Electro-optics, Vol. 7 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CFG2.

B. Ya Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, New York, 1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Physical mechanisms for (a)–(c), forward and (d)–(g) backward stimulated photorefractive scattering when (a)–(f) the seed is intrinsic to the crystal and g, when a retroreflecting array is used to backinject a strong seed into the crystal from the outside. (a) Fresnel refraction and anisotropic light scattering off crystal inhomogeneities. (b) Formation of photorefractive gratings for forward scattering; gratings oriented as shown have higher two-wave mixing gain coefficients than differently oriented gratings. (c) Forward stimulated photorefractive scattering, or beam fanning. (d) Anisotropic light scattering off crystal inhomogeneities. (e) Formation of a high-gain photorefractive grating for backward scattering. (f) Formation of a high-reflectivity phase-conjugate wave when the gain–length product is above threshold. (g) Backinjection of a seed beam by a retroreflecting array external to the crystal reduces the gain–length product requirement for backward stimulated photorefractive scattering.

Fig. 2
Fig. 2

Experimental apparatus: L1, lens of focal length f1; L2, lens of focal length f2; λ/2, half-wave plate; PBS, polarizing beam splitter; AFRC, U.S. Air Force resolution chart; N D, neutral-density. The laser is polarized in the plane of the c axis.

Fig. 3
Fig. 3

Time-series photographs of the beam path inside a BaTiO3:Co crystal: (a) before, (b) during, and (c) after the buildup of a steady-state seeded stimulated photorefractive scattering phase-conjugate reflectivity of ∼60%. In a there was no external seed and no backward stimulated photorefractive scattering. The seed in (b) and (c) was a special-effects projection screen, 3M 7615. The beam enters the crystal’s a face. The lens–crystal separation is 10 cm. The laser beam was neither expanded nor spatially filtered. f1 = 20 cm.

Fig. 4
Fig. 4

Fidelity of seeded stimulated photorefractive scattering phase conjugation, demonstrated by comparing the images of the U.S. Air Force resolution chart after phase conjugation by the stimulated photorefractive scattering conjugator seeded by the retroreflecting screen (a) without and (b) with a fixed aberrator. Improved performance of the conjugator seeded by the retroreflecting screen compared with (c) performance when the conjugator is seeded by a perfectly diffuse scatterer is also evident. The severity of the aberrator is evident from (d), in which the seeded stimulated photorefractive scattering conjugator is replaced by an ordinary mirror. The lens–crystal separation is 35 cm. f1 = 50 cm.

Fig. 5
Fig. 5

Observation of threshold in phase-conjugate reflectivity and fidelity as a function of seed intensity, f1 = 25 cm and f2 = 50 cm. The beam diameter at the crystal’s entrance face is ∼0.3 cm. The pinhole diameter is 50 μm.

Fig. 6
Fig. 6

Effect of pump power on reflectivity and fidelity for an unaberrated beam. The crystal is positioned 5 cm upstream from the len’s focus, where the incident beam diameter is ∼0.4 cm. f1 = 50 cm and f2 = 10 cm. The pinhole diameter is 100 μm.

Fig. 7
Fig. 7

Top-view photograph of beam trajectory during backseeded stimulated photorefractive scattering phase conjugation with the pump beam entering a c face of the crystal.

Metrics