Abstract

We have measured the temperature dependence of the electron mobility in a single crystal of photorefractive n-type cubic Bi12SiO20 by using a holographic time-of-flight technique. Our results show that the mobility, with a value μ = 0.24 ± 0.07 cm2/(V s) at room temperature, has a temperature dependence of the Arrhenius form, with an activation energy of 320 ± 40 meV in the experimental range 270–310 K.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Pauliat, A. Villing, J. C. Launay, G. Roosen, J. Opt. Soc. Am. B 7, 1481 (1990).
    [CrossRef]
  2. J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
    [CrossRef]
  3. J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
    [CrossRef]
  4. F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
    [CrossRef]
  5. J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
    [CrossRef]
  6. A. R. Tanguay, “The Czochralski growth and optical properties of bismuth silicon oxide” (Yale University, New Haven, Conn., 1977).
  7. S. H. Wemple, M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 264.
  8. B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).
  9. V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).
  10. N. Klein, D. S. Tannhauser, M. Pollak, eds., Conduction in Low-Mobility Materials, (Taylor & Francis, London, 1971).
  11. J. Mort, D. M. Pai, eds., Photoconductivity and Related Phenomena (Elsevier, Amsterdam, 1976).
  12. P. Nouchi, J. P. Partanen, R. W. Hellwarth, “Conduction band and trap limited mobilities in Bi12SiO20,” in Photorefractive Materials, Effects, and Devices, Vol. 14 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 236–239.

1991

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

1990

G. Pauliat, A. Villing, J. C. Launay, G. Roosen, J. Opt. Soc. Am. B 7, 1481 (1990).
[CrossRef]

J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
[CrossRef]

1989

F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
[CrossRef]

1988

V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).

1986

J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
[CrossRef]

1980

B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).

Astratov, V. N.

V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).

DiDomenico, M.

S. H. Wemple, M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 264.

Furman, A. S.

V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).

Hellwarth, R. W.

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
[CrossRef]

F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
[CrossRef]

J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
[CrossRef]

P. Nouchi, J. P. Partanen, R. W. Hellwarth, “Conduction band and trap limited mobilities in Bi12SiO20,” in Photorefractive Materials, Effects, and Devices, Vol. 14 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 236–239.

Il’inskii, A. V.

V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).

Jonathan, J. M. C.

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
[CrossRef]

J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
[CrossRef]

Kostyuk, B. Kh.

B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).

Kudzin, A. Yu.

B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).

Launay, J. C.

Nouchi, P.

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

P. Nouchi, J. P. Partanen, R. W. Hellwarth, “Conduction band and trap limited mobilities in Bi12SiO20,” in Photorefractive Materials, Effects, and Devices, Vol. 14 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 236–239.

Partanen, J. P.

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
[CrossRef]

P. Nouchi, J. P. Partanen, R. W. Hellwarth, “Conduction band and trap limited mobilities in Bi12SiO20,” in Photorefractive Materials, Effects, and Devices, Vol. 14 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 236–239.

Pauliat, G.

Roosen, G.

G. Pauliat, A. Villing, J. C. Launay, G. Roosen, J. Opt. Soc. Am. B 7, 1481 (1990).
[CrossRef]

J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
[CrossRef]

Sokolyanskii, G. Kh.

B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).

Strohkendl, F. P.

F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
[CrossRef]

Tanguay, A. R.

A. R. Tanguay, “The Czochralski growth and optical properties of bismuth silicon oxide” (Yale University, New Haven, Conn., 1977).

Tayabati, P.

F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
[CrossRef]

Villing, A.

Wemple, S. H.

S. H. Wemple, M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 264.

Appl. Phys. Lett.

J. P. Partanen, J. M. C. Jonathan, R. W. Hellwarth, Appl. Phys. Lett. 57, 2404 (1990).
[CrossRef]

IEEE J. Quantum Electron.

J. M. C. Jonathan, R. W. Hellwarth, G. Roosen, IEEE J. Quantum Electron. QE-22, 1936 (1986).
[CrossRef]

J. Appl. Phys.

F. P. Strohkendl, P. Tayabati, R. W. Hellwarth, J. Appl. Phys. 66, 6024 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev. B

J. P. Partanen, P. Nouchi, J. M. C. Jonathan, R. W. Hellwarth, Phys. Rev. B 44, 1487 (1991).
[CrossRef]

Sov. Phys. Solid State

B. Kh. Kostyuk, A. Yu. Kudzin, G. Kh. Sokolyanskii, Sov. Phys. Solid State 22, 1429 (1980).

Sov. Tech. Phys. Lett.

V. N. Astratov, A. V. Il’inskii, A. S. Furman, Sov. Tech. Phys. Lett. 14, 581 (1988).

Other

N. Klein, D. S. Tannhauser, M. Pollak, eds., Conduction in Low-Mobility Materials, (Taylor & Francis, London, 1971).

J. Mort, D. M. Pai, eds., Photoconductivity and Related Phenomena (Elsevier, Amsterdam, 1976).

P. Nouchi, J. P. Partanen, R. W. Hellwarth, “Conduction band and trap limited mobilities in Bi12SiO20,” in Photorefractive Materials, Effects, and Devices, Vol. 14 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 236–239.

A. R. Tanguay, “The Czochralski growth and optical properties of bismuth silicon oxide” (Yale University, New Haven, Conn., 1977).

S. H. Wemple, M. DiDomenico, “Electrooptical and nonlinear optical properties of crystals,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1972), Vol. 3, pp. 264.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experiment performed to measure the mobility in the n-BSO sample. The 30-ps laser pulses ① and ② (532 nm) write the photorefractive grating, while the beam ③ (633 nm) diffracts from it to form beam ④. The transmitted beam ⑤ is used to measure simultaneously the applied electric field.

Fig. 2
Fig. 2

Time evolution of the diffracted cw 633-nm beam at various temperatures for an applied voltage of 500 V. An experimental order of magnitude of values for the peaks of the diffraction efficiency curves is from 10−5 to 10−6.

Fig. 3
Fig. 3

Measured values of mobility as a function of the inverse of the temperature for two values of the static voltage V0 applied as in Fig. 1. The two lines represent the error margins for the activation energy Ea = 320 ± 40 meV.

Tables (1)

Tables Icon

Table 1 Fitting Parameters for Solid Curves of Fig. 2 and for Other Data at Temperature T, Voltage V0, Internal Field E0,a and Pulse Energy Flux U0

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ ~ exp ( E a / k B T ) ,
η = η | 1 exp [ ( Γ + i Γ ) t ] | 2 .
μ = Γ / k E 0

Metrics