Abstract

The advantages of mode locking with spatial dispersion in the gain medium are demonstrated in a passively mode-locked dye laser. The cavity design and the value of dispersion necessary to get benefit from the dispersive scheme are discussed. For a given strength of the basic mode-locking mechanism a dramatic reduction of the pulse duration is obtained as compared with the standard case of no dispersion. Pulses shorter than 100 fs are generated in a simple linear resonator at pump powers far above the threshold. Wavelength tuning is obtained over a range of approximately 10 nm.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235 (1989).
    [CrossRef]
  2. M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based spatially-dispersive resonator,” Appl. Phys. B 51, 300 (1990).
    [CrossRef]
  3. M. B. Danailov and I. P. Christov, “Amplification of spatially dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397 (1990).
    [CrossRef]
  4. O. G. Peterson, Quantum Electronics, Part A, Vol. 15 of Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), p. 338.
  5. H. Kogelnik, “Imaging of optical mode-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455 (1965).
    [CrossRef]
  6. N. I. Michailov, “Design of ring cavities for cw passively mode-locked dye lasers,” Opt. Quantum Electron. 20, 175 (1988).
    [CrossRef]
  7. O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296 (1989).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.
  9. I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
    [CrossRef]
  10. Colorless Optical Glass, catalog (Mashpriborintorg, Moscow, 1983).
  11. V. S. Mashkevich, Kinetic Theory of the Lasers (Nauka, Moscow, 1971), p. 102.
  12. J. A. Valdmanis and R. L. Fork, “Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption and saturable gain,” IEEE J. Quantum Electron. QE-22, 112 (1986).
    [CrossRef]
  13. V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
    [CrossRef] [PubMed]
  14. H. A. Haus and Y. Silberberg, “Laser mode-locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
    [CrossRef]
  15. N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
    [CrossRef]
  16. G. H. C. New, “Pulse evolution in mode-locked quasicontinuous lasers,” IEEE J. Quantum Electron. QE-10, 115 (1974).
    [CrossRef]
  17. J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
    [CrossRef]

1991 (1)

I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
[CrossRef]

1990 (3)

M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based spatially-dispersive resonator,” Appl. Phys. B 51, 300 (1990).
[CrossRef]

M. B. Danailov and I. P. Christov, “Amplification of spatially dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397 (1990).
[CrossRef]

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

1989 (4)

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
[CrossRef]

M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235 (1989).
[CrossRef]

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

1988 (1)

N. I. Michailov, “Design of ring cavities for cw passively mode-locked dye lasers,” Opt. Quantum Electron. 20, 175 (1988).
[CrossRef]

1986 (2)

H. A. Haus and Y. Silberberg, “Laser mode-locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

J. A. Valdmanis and R. L. Fork, “Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption and saturable gain,” IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

1974 (1)

G. H. C. New, “Pulse evolution in mode-locked quasicontinuous lasers,” IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

1965 (1)

H. Kogelnik, “Imaging of optical mode-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455 (1965).
[CrossRef]

Chilla, J. L. A.

J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
[CrossRef]

Christov, I. P.

I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
[CrossRef]

M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based spatially-dispersive resonator,” Appl. Phys. B 51, 300 (1990).
[CrossRef]

M. B. Danailov and I. P. Christov, “Amplification of spatially dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397 (1990).
[CrossRef]

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235 (1989).
[CrossRef]

Danailov, M. B.

I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
[CrossRef]

M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based spatially-dispersive resonator,” Appl. Phys. B 51, 300 (1990).
[CrossRef]

M. B. Danailov and I. P. Christov, “Amplification of spatially dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397 (1990).
[CrossRef]

M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235 (1989).
[CrossRef]

Deligeorgiev, T. G.

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

Fork, R. L.

J. A. Valdmanis and R. L. Fork, “Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption and saturable gain,” IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

Haus, H. A.

H. A. Haus and Y. Silberberg, “Laser mode-locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Imaging of optical mode-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455 (1965).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

Martinez, O. F.

J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
[CrossRef]

Mashkevich, V. S.

V. S. Mashkevich, Kinetic Theory of the Lasers (Nauka, Moscow, 1971), p. 102.

Michailov, N. I.

I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
[CrossRef]

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

N. I. Michailov, “Design of ring cavities for cw passively mode-locked dye lasers,” Opt. Quantum Electron. 20, 175 (1988).
[CrossRef]

New, G. H. C.

G. H. C. New, “Pulse evolution in mode-locked quasicontinuous lasers,” IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

Pernas, P. L.

J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
[CrossRef]

Peterson, O. G.

O. G. Peterson, Quantum Electronics, Part A, Vol. 15 of Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), p. 338.

Petrov, V.

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

Rudolph, W.

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.

Silberberg, Y.

H. A. Haus and Y. Silberberg, “Laser mode-locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

Stamm, U.

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

Tomov, I. V.

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

Valdmanis, J. A.

J. A. Valdmanis and R. L. Fork, “Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption and saturable gain,” IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

Wilhelmi, B.

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

Appl. Phys. B (2)

M. B. Danailov and I. P. Christov, “Ultrabroadband laser using prism-based spatially-dispersive resonator,” Appl. Phys. B 51, 300 (1990).
[CrossRef]

I. P. Christov, N. I. Michailov, and M. B. Danailov, “Mode-locking with spatial dispersion in the gain medium,” Appl. Phys. B 53, 115 (1991).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Imaging of optical mode-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455 (1965).
[CrossRef]

IEEE J. Quantum Electron. (4)

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

J. A. Valdmanis and R. L. Fork, “Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption and saturable gain,” IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

H. A. Haus and Y. Silberberg, “Laser mode-locking with addition of nonlinear index,” IEEE J. Quantum Electron. QE-22, 325 (1986).
[CrossRef]

G. H. C. New, “Pulse evolution in mode-locked quasicontinuous lasers,” IEEE J. Quantum Electron. QE-10, 115 (1974).
[CrossRef]

Opt. Commun. (3)

J. L. A. Chilla, P. L. Pernas, and O. F. Martinez, “Parameters that determine the wavelength of a passively mode-locked dye laser,” Opt. Commun. 72, 313 (1989).
[CrossRef]

M. B. Danailov and I. P. Christov, “A novel method of ultrabroadband laser generation,” Opt. Commun. 73, 235 (1989).
[CrossRef]

M. B. Danailov and I. P. Christov, “Amplification of spatially dispersed ultrabroadband laser pulses,” Opt. Commun. 77, 397 (1990).
[CrossRef]

Opt. Quantum Electron. (2)

N. I. Michailov, “Design of ring cavities for cw passively mode-locked dye lasers,” Opt. Quantum Electron. 20, 175 (1988).
[CrossRef]

N. I. Michailov, T. G. Deligeorgiev, I. P. Christov, and I. V. Tomov, “Performances of a cw Rhodamine 6G dye laser passively mode-locked by a new styryl dye,” Opt. Quantum Electron. 22, 293 (1990).
[CrossRef]

Phys. Rev. A (1)

V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw mode-locked dye lasers,” Phys. Rev. A 40, 1474 (1989).
[CrossRef] [PubMed]

Other (4)

O. G. Peterson, Quantum Electronics, Part A, Vol. 15 of Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), p. 338.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 25.

Colorless Optical Glass, catalog (Mashpriborintorg, Moscow, 1983).

V. S. Mashkevich, Kinetic Theory of the Lasers (Nauka, Moscow, 1971), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Principal resonator configuration of a cw dye laser with spatial dispersion in the gain medium. (b) Part of the equivalent unfolded scheme with internal lenses. The prisms are placed at the focal planes of the focusing elements. The solid line is the center frequency beam path; the dashed line, the beam path of a shifted frequency.

Fig. 2
Fig. 2

(a) Dispersive resonator schemes of a cw dye laser (M0P1M1M2M3) and a linear cavity passively mode-locked dye laser (inset I). The prism pair P2P3 given in inset II can be added for group-velocity dispersion correction or compensation for the lateral displacement of the spectral components. (b) Equivalent unfolded scheme of the gain mirror section and stability circles diagram.4 f1 and f2 are the effective focal lengths of curved mirrors M1 and M2. The beam paths of two spectral components are indicated by solid and dashed lines.

Fig. 3
Fig. 3

Output spectra of a cw dye laser with spatial dispersion in the gain medium for two different values of the dispersion: (a) prism material quartz, calculated value of the parameter δ = 5.7 nm; (b) spectral evolution as the pump power is increased; prism material TΦ12 glass10, δ = 1.6 nm.

Fig. 4
Fig. 4

Autocorrelation trace and corresponding spectrum of the pulses generated from a linear-cavity, passively mode-locked dye laser with spatial dispersion in the gain medium. The pump power (3 W) is twice the threshold.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f 2 2 d 2 f 2 = f 1 2 l f 1 f 1 2 ( d 1 l ) ( d 1 f 1 ) ( 2 d 1 l f 1 ) ,
d x d λ = 2 d 1 l f 1 d 1 f 1 f 1 d n d λ .
δ = [ 2 λ ( d 1 f 1 ) π ( 2 d 1 l f 1 ) 2 ] 1 / 2 ( d n / d λ ) 1 .

Metrics