Abstract

Parasitic lasing is examined with an emphasis on understanding and quantifying its effect on high-gain laser systems. Parasitic lasing is unwanted stimulated emission commonly found in high-gain optical systems. A general technique was developed that carefully retroreflects light back into the optical system, thereby creating an externally induced oscillator. Discrepancies between experimental data and threshold calculations for the externally induced oscillator are direct evidence of optical misalignment or of component performance problems. Any changes in the optical system can be directly measured as a change in threshold for the externally induced oscillator. This technique also enables one to align the system for maximum parasitic suppression with the system fully operational. Experimental data illustrating the utility of this technique are presented.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, W. J. Kozlovsky, R. L. Byer, C. E. Byvik, “Coherent laser radar at 1.06 μm using Nd:YAG lasers,” Opt. Lett. 12, 239 (1987).
    [CrossRef] [PubMed]
  2. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776 (1989).
    [CrossRef] [PubMed]
  3. J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
    [CrossRef]
  4. M. E. Storm, N. P. Barnes, “LITE laser design and architecture” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 138–140.
  5. M. E. Storm, N. P. Barnes, “Development of a Nd:YAG laser for LITE,” presented at the 15th International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.
  6. K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.
  7. J. A. Glaze, S. Guch, J. B. Trenholme, “Parasitic suppression in large aperature Nd:glass disk laser amplifiers,” Appl. Opt. 13, 2808 (1974).
    [CrossRef] [PubMed]

1989 (1)

1987 (1)

1974 (1)

Barnes, N. P.

M. E. Storm, N. P. Barnes, “Development of a Nd:YAG laser for LITE,” presented at the 15th International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.

M. E. Storm, N. P. Barnes, “LITE laser design and architecture” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 138–140.

Byer, R. L.

Byvik, C. E.

Coyle, D. B.

J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
[CrossRef]

Czechanski, J. P.

J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
[CrossRef]

Dallas, J. L.

J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
[CrossRef]

Glaze, J. A.

Guch, S.

Hale, C. P.

Henderson, S. W.

Huffaker, R. M.

Jancaitis, K. S.

K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.

Kane, T. J.

Kavaya, M. J.

Kozlovsky, W. J.

Magee, J. R.

Murray, J. E.

K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.

Powell, H. T.

K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.

Seery, B. D.

J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
[CrossRef]

Storm, M. E.

M. E. Storm, N. P. Barnes, “Development of a Nd:YAG laser for LITE,” presented at the 15th International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.

M. E. Storm, N. P. Barnes, “LITE laser design and architecture” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 138–140.

Trenholme, J. B.

J. A. Glaze, S. Guch, J. B. Trenholme, “Parasitic suppression in large aperature Nd:glass disk laser amplifiers,” Appl. Opt. 13, 2808 (1974).
[CrossRef] [PubMed]

K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.

Appl. Opt. (1)

Opt. Lett. (2)

Other (4)

J. L. Dallas, J. P. Czechanski, D. B. Coyle, B. D. Seery, “Geodynamic laser ranging transmitter,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 2, p. 1497.
[CrossRef]

M. E. Storm, N. P. Barnes, “LITE laser design and architecture” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 138–140.

M. E. Storm, N. P. Barnes, “Development of a Nd:YAG laser for LITE,” presented at the 15th International Laser Radar Conference, Tomsk, USSR, July 23–27, 1990.

K. S. Jancaitis, J. E. Murray, H. T. Powell, J. B. Trenholme, “Calculations of ASE and parasitic oscillation limits in laser slabs/disks,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), paper THP1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Temporal behavior of multiple-pulse parasitic lasing slightly above threshold. The laser energy is approximately 100 μJ.

Fig. 2
Fig. 2

CVR optical layout.

Fig. 3
Fig. 3

Calculated and measured reflectivity of the CVR.

Fig. 4
Fig. 4

LITE laser system, demonstrating the use of controlled-feedback technique using the CVR.

Fig. 5
Fig. 5

LITE laser Porro oscillator design.

Fig. 6
Fig. 6

Threshold reflectivity versus the rotation angle of the half-wave plate inside the Faraday isolator. The angle is measured with respect to the fast optic axis.

Fig. 7
Fig. 7

Comparison of calculated and measured threshold reflectivity versus small-signal gain inside the externally induced oscillator.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R cvr = R m T l 2 T ND 2 T ( polarization ) ,
T ( polarization ) = cos 2 2 A .
( G T T p T c ) 2 T f T r R CVR = 1 ,
R CVR = 1 / ( G T T p T c ) 2 T f T r .

Metrics