Abstract

To clarify the potential of photochemical hole-burning memory systems, we study the theoretical recording-density limit of such systems. Shot noise and material noise are considered the principal noises. Material noise originates in fluctuations in the chromophore concentration. The recording-density limit proves to be proportional to (multiplicity)1/2 × (chromophore concentration)1/2 × (hole depth), approximately. It becomes clear that the recording spot diameter can be optimized to maximize the recording density. A molar extinction coefficient for a chromophore can be also optimized, and its value is ∼105 L/(mol cm) under the conditions of a 0.2 hole depth, 1000 multiplicity, and 10−2 mol/L choromophore concentration. When the readout time is 10 ns/bit and the signal-to-noise ratio is 20, in addition to the above conditions, the recording-density limit is calculated to be 26 Gbits/cm2. For this readout time the optimal recording spot diameter is ∼2 μm. When the readout time is less than ∼10 ns/bit, shot noise becomes the dominant noise; when the readout time is more than ∼50 ns/bit, the recording-density limit increases, and the influence of material noise becomes prominent.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).
  2. G. Bouwhuis, J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766 (1990).
    [CrossRef] [PubMed]
  3. M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.
  4. C. Tsang, “Design and performance considerations in high areal density longitudinal recording,” J. Appl. Phys. 69, 5393 (1991).
    [CrossRef]
  5. M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.
  6. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).
  7. W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  8. K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
    [CrossRef]
  9. A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
    [CrossRef]
  10. A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991).
    [CrossRef]
  11. C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
    [CrossRef]
  12. M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
    [CrossRef]
  13. W. E. Moerner, M. D. Levenson, “Can single-photon processes provide useful materials for frequency-domain optical storage?” J. Opt. Soc. Am. B 2, 915 (1985).
    [CrossRef]
  14. W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986).
    [CrossRef]
  15. S. Völker, “Optical linewidth and dephasing of organic amorphous and semi-crystalline solids,” J. Lumin. 36, 251 (1987).
    [CrossRef]
  16. M. Romagnoli, W. E. Moerner, F. M. Schellenberg, M. D. Levenson, G. C. Bjorklund, “Beyond the bottleneck: submicrosecond hole burning in phthalocyanine,” J. Opt. Soc. Am. B 1, 341 (1984).
    [CrossRef]
  17. N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).
  18. T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
    [CrossRef]
  19. W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
    [CrossRef]
  20. S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
    [CrossRef]
  21. T. Shimizu, “New spectroscopy and applications (7) Saturation spectroscopy,” Bunko Kenkyu 28, 41 (1979).
    [CrossRef]
  22. Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.
  23. H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).
  24. P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
    [CrossRef]
  25. H. Miyamoto, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan (personal communication, 1991).
  26. R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983).
    [CrossRef]

1992 (1)

S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
[CrossRef]

1991 (3)

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

C. Tsang, “Design and performance considerations in high areal density longitudinal recording,” J. Appl. Phys. 69, 5393 (1991).
[CrossRef]

A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991).
[CrossRef]

1990 (4)

C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
[CrossRef]

G. Bouwhuis, J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766 (1990).
[CrossRef] [PubMed]

Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.

P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
[CrossRef]

1989 (2)

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

1988 (2)

K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
[CrossRef]

M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
[CrossRef]

1987 (3)

S. Völker, “Optical linewidth and dephasing of organic amorphous and semi-crystalline solids,” J. Lumin. 36, 251 (1987).
[CrossRef]

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
[CrossRef]

1986 (1)

W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983).
[CrossRef]

1979 (1)

T. Shimizu, “New spectroscopy and applications (7) Saturation spectroscopy,” Bunko Kenkyu 28, 41 (1979).
[CrossRef]

Akagi, K.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Arai, S.

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Aratani, K.

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

Bjorklund, G. C.

Bouwhuis, G.

Bräuchle, C.

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
[CrossRef]

Brewer, R. G.

R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983).
[CrossRef]

Carter, T. P.

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
[CrossRef]

Castro, G.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).

DeVoe, R. G.

R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983).
[CrossRef]

Fukumoto, A.

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

Fukuoka, H.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Furusawa, A.

A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991).
[CrossRef]

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

Futamoto, M.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Galaup, J. P.

P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
[CrossRef]

Haarer, D.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).

Hiratsuka, H.

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

Horie, K.

S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
[CrossRef]

A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991).
[CrossRef]

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).

Inaba, N.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Iwamoto, M.

K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
[CrossRef]

J. von der Zaag, P.

P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
[CrossRef]

Kaneko, M.

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

Kominami, K.

K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
[CrossRef]

Kugiya, F.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Kuroki, K.

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

Lee, V. Y.

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

Lenth, W.

W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986).
[CrossRef]

Levenson, M. D.

Macfarlane, R. M.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).

Machida, S.

S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
[CrossRef]

Maeda, M.

M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
[CrossRef]

Maeda, T.

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Maravi, M.

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

Matsuda, Y.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Mita, I.

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

Miyamoto, H.

H. Miyamoto, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan (personal communication, 1991).

Miyamura, Y.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Moerner, W. E.

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
[CrossRef]

W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986).
[CrossRef]

W. E. Moerner, M. D. Levenson, “Can single-photon processes provide useful materials for frequency-domain optical storage?” J. Opt. Soc. Am. B 2, 915 (1985).
[CrossRef]

M. Romagnoli, W. E. Moerner, F. M. Schellenberg, M. D. Levenson, G. C. Bjorklund, “Beyond the bottleneck: submicrosecond hole burning in phthalocyanine,” J. Opt. Soc. Am. B 1, 341 (1984).
[CrossRef]

Munemoto, T.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Murase, N.

N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).

Nakao, T.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Nakayama, T.

M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
[CrossRef]

Nishi, T.

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

Ohta, M.

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

Prass, B.

C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
[CrossRef]

Romagnoli, M.

Saitoo, A.

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Sakakibara, Y.

Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.

Sakoda, K.

K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
[CrossRef]

Sawaguchi, H.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Schellenberg, F. M.

Shigematsu, K.

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Shimada, T.

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

Shimizu, T.

T. Shimizu, “New spectroscopy and applications (7) Saturation spectroscopy,” Bunko Kenkyu 28, 41 (1979).
[CrossRef]

Spruit, J. H. M.

Stehik, D.

C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
[CrossRef]

Sugiyama, H.

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Suzuki, H.

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

Suzuki, M.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Takagaki, T.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Takahashi, H.

Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.

Takano, H.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

Tani, T.

Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.

Terao, M.

N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).

Trommsdorff, H. P.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).

Tsang, C.

C. Tsang, “Design and performance considerations in high areal density longitudinal recording,” J. Appl. Phys. 69, 5393 (1991).
[CrossRef]

Völker, S.

P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
[CrossRef]

S. Völker, “Optical linewidth and dephasing of organic amorphous and semi-crystalline solids,” J. Lumin. 36, 251 (1987).
[CrossRef]

von Borczyskowski, C.

C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
[CrossRef]

Watanabe, K.

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

Yamashita, T.

S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
[CrossRef]

Yoshimura, M.

M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. E. Moerner, T. P. Carter, C. Bräuchle, “Fast burning of persistent spectral holes in small laser spots using photon-gated materials,” Appl. Phys. Lett. 50, 430 (1987).
[CrossRef]

S. Machida, K. Horie, T. Yamashita, “Photon-gated photochemical hole burning by two-color sensitization of a photoreactive polymer via triplet–triple energy transfer,” Appl. Phys. Lett. 60, 286 (1992).
[CrossRef]

Bunko Kenkyu (1)

T. Shimizu, “New spectroscopy and applications (7) Saturation spectroscopy,” Bunko Kenkyu 28, 41 (1979).
[CrossRef]

Chem. Phys. Lett. (2)

M. Yoshimura, M. Maeda, T. Nakayama, “Photochemical hole burning of anthraquinone derivatives in acrylic polymers,” Chem. Phys. Lett. 143, 342 (1988).
[CrossRef]

P. J. von der Zaag, J. P. Galaup, S. Völker, “In search of spectral diffusion in glasses. A time-resolved transient hole-burning study of porphins in polyethylene,” Chem. Phys. Lett. 166, 263 (1990), and references therein.
[CrossRef]

J. Appl. Phys. (2)

A. Furusawa, K. Horie, K. Kuroki, I. Mita, “Photochemical hole burning of tetraphenylporphin in phenoxy resin at 4.2–80 K,” J. Appl. Phys. 66, 6041 (1989).
[CrossRef]

C. Tsang, “Design and performance considerations in high areal density longitudinal recording,” J. Appl. Phys. 69, 5393 (1991).
[CrossRef]

J. Chem. Phys. (2)

A. Furusawa, K. Horie, “High-temperature photochemical hole burning and laser-induced hole filling in dye-doped polymer systems,” J. Chem. Phys. 94, 80 (1991).
[CrossRef]

C. von Borczyskowski, B. Prass, D. Stehik, “Hole burning and luminescence spectroscopy of the site distribution and photoinduced reorientation of dihydrophenazine in single crystal matrices,” J. Chem. Phys. 92, 1581 (1990).
[CrossRef]

J. Lumin. (1)

S. Völker, “Optical linewidth and dephasing of organic amorphous and semi-crystalline solids,” J. Lumin. 36, 251 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

T. P. Carter, C. Bräuchle, V. Y. Lee, M. Maravi, W. E. Moerner, “Mechanism of photon-gated persistent spectral hole burning in metal–tetrabenzoporphyrin/halomethane systems: donor–acceptor electron transfer,” J. Phys. Chem. 91, 3998 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Suzuki, T. Shimada, T. Nishi, H. Hiratsuka, “Photochemical hole burning in highly doped TPP/PMMA systems. Energy migration and stabilization of burnt holes for subsequent hole-burnings,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 251 (1989).

K. Sakoda, K. Kominami, M. Iwamoto, “High temperature photochemical hole burning of tetrasodium 5, 10, 15, 20-tetra(4-sulfonato-phenyl)porphin in polyvinyl alcohol,” Jpn. J. Appl. Phys. 27, L1304 (1988).
[CrossRef]

Opt. Commun. (1)

W. Lenth, W. E. Moerner, “Gated spectral hole-burning for frequency domain optical storage,” Opt. Commun. 58, 249 (1986).
[CrossRef]

Photochemical Processes in Organized Molecular Systems (1)

Y. Sakakibara, H. Takahashi, T. Tani, “Photochemical hole-burning of Quinizarin-cyclodextrin included in LB-film,” in Photochemical Processes in Organized Molecular Systems, Memorial symposium for Prof. Sigeo Tazuke (1990), p. 139.

Phys. Rev. Lett. (1)

R. G. DeVoe, R. G. Brewer, “Experimental test of the optical Bloch equations for solids,” Phys. Rev. Lett. 50, 1269 (1983).
[CrossRef]

Trans. Inst. Electron. Inform. Commun. Eng. Lett. (1)

T. Maeda, A. Saitoo, H. Sugiyama, S. Arai, K. Shigematsu, “High speed, large capacity optical disk using pit-edge recording and the MCAV method,” Trans. Inst. Electron. Inform. Commun. Eng. Lett. E74, 951 (1991).

Other (6)

M. Ohta, A. Fukumoto, K. Aratani, M. Kaneko, K. Watanabe, “Read out mechanism of magnetically induced super resolution,” in Proceedings of the Magneto-Optical Recording International Symposium ’91 (Magnetics Society of Japan, Tokyo, 1991), abstract 18-I-06.

M. Futamoto, F. Kugiya, M. Suzuki, H. Takano, Y. Matsuda, N. Inaba, Y. Miyamura, K. Akagi, T. Nakao, H. Sawaguchi, H. Fukuoka, T. Munemoto, T. Takagaki, “Investigation of 2 Gb/in2magnetic recording at a track density of 17kTPI,” in Digest of the Fifth Joint Magnetism and Magnetic Materials Conference (Institute of Electrical and Electronics Engineers, New York, 1991), paper AC-01.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent4,101,976 (July18, 1978).

W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

H. Miyamoto, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185, Japan (personal communication, 1991).

N. Murase, M. Terao, K. Horie, “Information recording and readout methods in photochemical hole burning memory,” Japan Patent Heisei3-123614 (May28, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the inhomogeneous light absorption band and photochemical holes. For simplicity we assume the inhomogeneous light absorption band to be rectangular and the photochemical hole to have the shape of an isosceles triangle.

Fig. 2
Fig. 2

Schematic diagram of readout lights and photocurrents before and after recording. The represented parameters are explained in the text and in Table 1; PD’s, photodetectors.

Fig. 3
Fig. 3

(a) Relationship between readout time τ and recording density D. The dashed curve shows a case in which material noise is not taken into account. When readout time is τa, recording density becomes Da, as is indicated by Eq. (18). (b) Relationship between recording spot diameter 2r and recording density D when readout time is τa. Again the dashed curve shows a case in which material noise is not taken into account.

Fig. 4
Fig. 4

Recording spot diameter 2r versus (a) recording density, (b) concentration, and (c) multiplicity when the readout time is τa in Fig. 3.

Fig. 5
Fig. 5

Readout time dependence of recording density [Eq. (18)] and optimal molar extinction coefficient [Eq. (19)] for a recording density corresponding to C = 10−2 mol/L, ζ = 0.2 and an optical density of 0.434. Other parameters used for the calculation are explained in the text and in Table 1. The dashed curve represents the results when material noise is ignored.

Fig. 6
Fig. 6

Recording spot diameter dependence of recording density. The parameters used for these calculations are as follows: (a) C = 10−2 mol/L, ζ = 0.2; (b) C = 10−3 mol/L, ζ = 0.3; (c) C = 10−3 mol/L, ζ = 0.2; (d) C = 10−3 mol/L, ζ = 0.1, as described in Table 2. The readout time is 10 ns/bit for all cases. Other parameters are explained in the text and in Table 1.

Tables (2)

Tables Icon

Table 1 Parameters Used for Theoretical Estimate and Model Calculations and Related Equation Numbersa

Tables Icon

Table 2 Parameter Pairs of Chromophore Concentration limit Cmax and Hole Depth ζ Used for Calculationa

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

C = ( 10 3 / N A ) M N λ .
10 C L = exp ( σ N λ L ) .
σ = 10 3 M N A log e .
ζ = number of chromophores that absorb light λ n initial number of chromophores that absorb light λ n .
σ T 1 F R 1 ,
F R 1 / ( σ T 1 ) .
i = q η Q F R A exp ( σ N λ L ) .
δ i 2 = ( i η Q ) 2 δ η Q 2 + ( i N λ ) 2 δ N λ 2 .
δ η Q = [ ( i τ / q ) 1 / 2 i τ / q ] η Q ,
δ N λ = [ ( N λ A L ) 1 / 2 / ( N λ A L ) ] N λ .
ζ = ( N λ N λ ) / N λ .
i = q η Q F R A exp ( σ N λ L ) .
S = i i ,
N = δ s = ( δ i 2 + δ i 2 ) 1 / 2 .
S / N = ζ ( A N λ L ) 1 / 2 [ ( 2 + ζ σ N λ L ) T 1 η Q exp ( σ N λ L ) σ N λ L 1 τ + ( 2 ζ + 2 ζ σ N λ L ) ] 1 / 2 ,
A = π r 2 ,
L = π r 2 / λ .
D = M / ( 2 r ) 2 = π 4 { N A 10 3 λ [ ( 2 + ζ κ ) T 1 η Q exp ( κ ) κ 1 τ + ( 2 ζ + 2 ζ κ ) ] } 1 / 2 × ( M C ) 1 / 2 ζ SNR .
= 4 D λ log e π C M .
D = π 4 [ N A 10 3 λ ( 2 ζ + 2 ζ κ ) ] 1 / 2 ( M C ) 1 / 2 ζ SNR .
M = π 2 r 4 N A C 10 3 λ [ ( 2 + ζ κ ) T 1 η Q exp ( κ ) κ 1 τ + ( 2 ζ + 2 ζ κ ) ] × ( ζ SNR ) 2 .
D = M / ( 2 r ) 2 for 2 r < 2 r 0 .
D = M max / ( 2 r ) 2 for 2 r > 2 r 0 .
τ = ( 2 + ζ κ ) T 1 η Q A L N λ exp ( κ ) κ ( SNR ζ ) 2 .
τ F R A = ( SNR ζ ) 2 2 + ζ κ η Q exp ( κ ) κ 2 ,
( SNR ζ ) 2 2 + 2 ζ η Q exp 2 2 2 .
1 σ T 1 = 2 exp ( σ N λ L ) η Q A τ ( σ N λ L ) 2 ( SNR ζ ) 2 .
2 exp ( σ N λ L ) η Q A τ ( σ N λ L ) 2 ( SNR ζ ) 2 exp 2 2 η Q A τ ( SNR ζ ) 2 .
σ τ T 1 2 η Q A exp 2 ( ζ SNR ) 2 .

Metrics