Abstract

We present a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample. The device is insensitive to the rotation of the sample in the plane perpendicular to ranging. Phase measurement accuracy is ±0.86°, but the reflectometer can distinguish local variations in birefringence as small as 0.05° with a distance resolution of 10.8 μm and a dynamic range of 90 dB. Birefringence-sensitive ranging in a wave plate, an electro-optic modulator, and a calf coronary artery is demonstrated.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  2. K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
    [CrossRef] [PubMed]
  3. H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
    [CrossRef]
  4. M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
    [CrossRef]
  5. K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
    [CrossRef]
  6. E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.
  7. D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
    [CrossRef] [PubMed]
  8. M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
    [CrossRef]
  9. R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
    [CrossRef]
  10. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [CrossRef]
  11. H. A. Quigley, E. M. Addicks, “Quantitative studies of retinal nerve fiber layer defects,” Arch. Ophthalmol. 100, 807–814 (1982).
    [CrossRef] [PubMed]
  12. S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
    [CrossRef] [PubMed]
  13. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1160 (1989).
    [CrossRef] [PubMed]
  14. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186 (1990).
    [CrossRef]
  15. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  16. K. M. Yoo, R. R. Alfano, “Determination of the scattering and absorption lengths from the temporal profile of a backscattered pulse,” Opt. Lett. 15, 276–278 (1990).
    [CrossRef] [PubMed]
  17. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  18. W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]

1991 (4)

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
[CrossRef]

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

1990 (4)

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

K. M. Yoo, R. R. Alfano, “Determination of the scattering and absorption lengths from the temporal profile of a backscattered pulse,” Opt. Lett. 15, 276–278 (1990).
[CrossRef] [PubMed]

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (5)

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1160 (1989).
[CrossRef] [PubMed]

1987 (2)

R. C. Youngquist, S. Carr, D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
[CrossRef] [PubMed]

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

1986 (1)

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

1982 (1)

H. A. Quigley, E. M. Addicks, “Quantitative studies of retinal nerve fiber layer defects,” Arch. Ophthalmol. 100, 807–814 (1982).
[CrossRef] [PubMed]

Addicks, E. M.

H. A. Quigley, E. M. Addicks, “Quantitative studies of retinal nerve fiber layer defects,” Arch. Ophthalmol. 100, 807–814 (1982).
[CrossRef] [PubMed]

Alfano, R. R.

Beaud, P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

Carr, S.

Chance, B.

Cheong, W.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
[CrossRef] [PubMed]

Chida, K.

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

Coleman, A. C.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Davies, D. E. N.

Dreher, A. W.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Feld, M. S.

Fujimoto, J. G.

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Gilgen, H. H.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

Hanafusa, H.

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

Himeno, A.

K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
[CrossRef]

Hodel, W.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

Huang, D.

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1160 (1989).
[CrossRef] [PubMed]

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

Keijzer, M.

Kobayashi, M.

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

Lin, C. P.

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Noda, J.

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Novak, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Patterson, M. S.

Pearce, J. A.

S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
[CrossRef] [PubMed]

Prahl, S. A.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Puliafito, C. A.

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Pulifafito, C. A.

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

Quigley, H.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Quigley, H. A.

H. A. Quigley, E. M. Addicks, “Quantitative studies of retinal nerve fiber layer defects,” Arch. Ophthalmol. 100, 807–814 (1982).
[CrossRef] [PubMed]

Reiter, K.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Richards-Kortum, R. R.

Salathe, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Shaw, B.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Swanson, E.

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Takada, K.

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
[CrossRef]

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

Taylor, H. F.

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

Thomsen, S.

S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
[CrossRef] [PubMed]

Wang, J.

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

Weinred, R. N.

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

Welch, A. J.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Yokohama, I.

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

Yoo, K. M.

Youngquist, R. C.

Yukimatsu, K.

K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
[CrossRef]

Appl. Opt (1)

K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt 26, 1603–1606 (1987).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (2)

H. A. Quigley, E. M. Addicks, “Quantitative studies of retinal nerve fiber layer defects,” Arch. Ophthalmol. 100, 807–814 (1982).
[CrossRef] [PubMed]

R. N. Weinred, A. W. Dreher, A. C. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, P. Beaud, “Submillimeter optical reflectometry,” IEEE J. Lightwave Technol. 7, 1225–1233 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Kobayashi, H. F. Taylor, K. Takada, J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photon. Technol. Lett. 3, 564–566 (1991).
[CrossRef]

K. Takada, A. Himeno, K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometer between 14 and 290 μm,” IEEE Photon. Technol. Lett. 3, 676–678 (1991).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

S. Thomsen, J. A. Pearce, W. Cheong, “Changes in birefringence as markers of thermal damage in tissues,” IEEE Trans. Biomed. Eng. 36, 1174–1179 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1160 (1989).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

M. Kobayashi, H. Hanafusa, K. Takada, J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).
[CrossRef]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Lasers Surg. Med. (1)

D. Huang, J. Wang, C. P. Lin, C. A. Pulifafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419–425 (1991).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

E. Swanson, D. Huang, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “A fiber-optic reflectometer for high resolution ranging of intraocular structure,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuS2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the birefringence-sensitive optical coherence-domain interferometer: PBS’s, polarizing beam splitters; QW’s, quarter-wave plates; DET’s, photodetectors; SLD, superluminescent diode; PZT, piezoelectric transducer; A/D, analog-to-digital converter.

Fig. 2
Fig. 2

Birefringence-sensitive ranging in an 830-nm mica quarter-wave plate. (a) Demodulated channel 1 signal. (b) Demodulated channel 2 signal. (c) Polarization-independent signal magnitude computed from Eq. (3) showing Fresnel reflection points (from left to right) at the air–glass, glass–mica, mica–glass, and glass–air boundaries. (d) Single-pass phase retardation evaluated at each Fresnel reflection point with straight-line interpolation detailing the birefringence in the mica layer.

Fig. 3
Fig. 3

Cumulative phase retardation measured for various rotations of a 550-nm quarter-wave-plate sample. Birefringence measurements are insensitive to sample rotation in the plane perpendicular to ranging.

Fig. 4
Fig. 4

Phase measurement precision and accuracy determined by measuring the phase retardation of a KD*P longitudinal electro-optic modulator. (a) Normalized channel 1 and channel 2 responses showing their sine and cosine dependences. (b) Measured single-pass phase retardation versus applied voltage with linear fit to the data (r = 0.9995). The 0.86° standard deviation is an indication of the measurement accuracy. (c) Single-pass phase retardation versus finely sampled applied voltage and linear fit. The 0.0087° standard deviation from linearity defines the measurement precision.

Fig. 5
Fig. 5

Birefringence-sensitive ranging in a calf coronary artery. (a) Log reflectivity magnitude and linear fit to exponential decay (r = 0.95) giving a total attenuation coefficient μ = 171 cm−1. (b) Cumulative phase retardation with linear fit (r = 0.74) based on the assumption of a homogenous medium. The slope of the fit, 0.068°/μm, gives a characterization of the global birefringence. Local phase variations are clearly visible.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ch 1 = K 1 R s exp [ ( Δ x / l c ) 2 ] | sin ( ϕ / 2 ) | ,
Ch 2 = K 2 R s exp [ ( Δ x / l c ) 2 ] | cos ( ϕ / 2 ) | ,
ϕ / 2 = arctan ( Ch 1 / Ch 2 ) .
( Ch 1 2 + Ch 2 2 ) 1 / 2 R s exp [ ( Δ x / l c ) 2 ]
ϕ / 2 = ( 360 ° / λ ) n o 3 r 63 V ,
R ( z ) = S ( z ) exp ( μ a z ) ,
R ( z ) = R 0 exp [ ( μ a + μ s ) z ] .

Metrics