Abstract

We present an analytical model for hole burning in a random collection of microparticles, based on single-particle properties. The model indicates that the linewidth of the central hole is approximately Lorentzian in shape and is controlled by the photon lifetimes in individual particles. Our conclusion is consistent with experiments on a two-dimensional layer of connected microparticles. Electrodynamic calculations for a pair of particles in contact provide an explanation for the apparent lack of importance of interparticle interactions in the experiments and suggest conditions under which the effects of such interactions should appear.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arnold, C. T. Liu, W. B. Whitten, and J. M. Ramsey, Opt. Lett. 16, 420 (1991).
    [Crossref] [PubMed]
  2. H. M. Nussenzvieg, Comments At. Mol. Phys. 23, 175 (1989).
  3. J.-Z. Zhang, D. L. Leach, and R. K. Chang, Opt. Lett. 13, 270 (1988).
    [Crossref] [PubMed]
  4. S. Arnold and L. M. Folan, Opt. Lett. 14, 387 (1989).
    [Crossref] [PubMed]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  6. S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.
  7. P. Chýlek, J. Opt. Soc. Am. 66, 285 (1976).
    [Crossref]
  8. L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
    [Crossref]
  9. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
    [Crossref] [PubMed]
  10. K. A. Fuller, Appl. Opt. 28, 3788 (1989).
    [Crossref] [PubMed]
  11. K. A. Fuller, Appl. Opt. 30, 4716 (1991).
    [Crossref] [PubMed]
  12. P. T. Leung and K. Young, J. Chem. Phys. 89, 2894 (1988).
    [Crossref]

1991 (2)

1990 (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

1989 (3)

1988 (2)

1985 (1)

L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[Crossref]

1976 (1)

Arnold, S.

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

Benner, R. E.

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Chang, R. K.

Chýlek, P.

Druger, S. D.

L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[Crossref]

Folan, L. M.

S. Arnold and L. M. Folan, Opt. Lett. 14, 387 (1989).
[Crossref] [PubMed]

L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[Crossref]

Fuller, K. A.

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

Leach, D. L.

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

P. T. Leung and K. Young, J. Chem. Phys. 89, 2894 (1988).
[Crossref]

Liu, C. T.

Nussenzvieg, H. M.

H. M. Nussenzvieg, Comments At. Mol. Phys. 23, 175 (1989).

Ramsey, J. M.

Whitten, W. B.

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

P. T. Leung and K. Young, J. Chem. Phys. 89, 2894 (1988).
[Crossref]

Zhang, J.-Z.

Appl. Opt. (2)

Chem. Phys. Lett. (1)

L. M. Folan, S. Arnold, and S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[Crossref]

Comments At. Mol. Phys. (1)

H. M. Nussenzvieg, Comments At. Mol. Phys. 23, 175 (1989).

J. Chem. Phys. (1)

P. T. Leung and K. Young, J. Chem. Phys. 89, 2894 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Phys. Rev. A (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[Crossref] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated internal normalized energy density E · E*/E02 in the equatorial plane for a spherical particle of refractive index 1.5 at its TM39,1 resonance; ka = 30.2210852.

Fig. 2
Fig. 2

Micrograph of a selected region of polystyrene particles on glass used as a hole-burning medium.

Fig. 3
Fig. 3

Fluorescence excitation spectra taken on glass (a) before and (b) after projecting a 40-W/cm2 beam onto the sample at 572.5 nm.

Fig. 4
Fig. 4

Fluorescence excitation spectra taken on polished aluminum (a) before and (b) after projecting a 40-W/cm2 beam onto the sample at 572.5 nm.

Fig. 5
Fig. 5

Computer-intensive self-consistent calculation of the normalized energy density E · E*/E02 within a pair of particles in contact and irradiated perpendicular to the line joining their centers. The particle on the left is the same as that in Fig. 1 and is irradiated at the same ka value. The particle on the right is 0.9 of the radius of the particle on the left, and both are simultaneously irradiated.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F B ( k ) = 0 d a d N d a [ s d 3 r u ( k a , r ) ] ,
F A ( k ) = 0 d a d N d a { s d 3 r u ( k a , r ) exp [ - β u ( k w a , r ) ] } .
h ( k ) = F B ( k ) - F A ( k ) = 0 d a d N d a ( s d 3 r { u ( k a , r ) - u ( k a , r ) exp [ - β u ( k w a , r ) ] } ) .
h ( k ) β s [ s u ( k a , r ) u ( k w a , r ) d 3 r ] d N d a d a .
h ( k ) β ( k k w ) 2 ( d N d a ) x / k w 0 d a L ( a - X k , Γ k ) × L ( a - X k w , Γ k w ) s [ f ( r ) ] 2 d 3 r .
h ( k ) β π Γ k w 3 4 ( d N d a ) x / k w { s [ f ( r ) ] 2 d 3 r } × L [ k - k w , 2 ( Γ / X ) k w ]
E ( k a , r ) = E 0 n = 1 i n ( 2 n + 1 ) n ( n + 1 ) × [ c n ( k a ) M n ( m k r ) + i d n ( k a ) N n ( m k r ) ] ,
d n = i m / { m ψ n ( m x ) [ ξ n ( x ) ] - ξ n ( x ) [ ψ n ( m x ) ] } , c n = i m / { ψ n ( m x ) [ ξ n ( x ) ] - m ξ n ( x ) [ ψ n ( m x ) ] } ,
Q = X n , s P Γ n , s P X n , s P ( Γ 0 ) n , s P + ( 2 m i / m r ) X n , s P .
u ( k a , r ) E 0 2 n C n L ( k a , X n E ) f n ( r ) + D n L ( k a , X n M ) g n ( r ) ,
L ( k a , X n G ) = L ( k a - X n , 1 G , Γ n , 1 G ) , C n L ( k a , X n E ) [ ( 2 n + 1 ) / ( n 2 + n ) ] 2 c n ( k a ) 2 , D n L ( X n M ) [ ( 2 n + 1 ) / ( n 2 + n ) ] 2 d n ( k a ) 2 , f n = M n 2 ,             g n = N n 2 .
h p ( k ) π β k w 3 E 0 4 4 n ( C n 2 Γ n E ( d N d a ) x n E / k w { s [ f n ( r ) ] 2 d r 3 } × L [ k - k w , 2 ( Γ n E / X n E ) k w ] + D n 2 Γ n M ( d N d a ) x n M / k w { s [ g n ( r ) ] 2 d r 3 } × L [ k - k w , 2 ( Γ n M / X n M ) k w ] ) .
( E n , E m ) = C n C m 0 L ( k a , X n E ) L ( k w a , X m E ) × d N d a d a s f n ( r ) f m ( r ) d r 3 .

Metrics