Abstract

We present an analytical model for hole burning in a random collection of microparticles, based on single-particle properties. The model indicates that the linewidth of the central hole is approximately Lorentzian in shape and is controlled by the photon lifetimes in individual particles. Our conclusion is consistent with experiments on a two-dimensional layer of connected microparticles. Electrodynamic calculations for a pair of particles in contact provide an explanation for the apparent lack of importance of interparticle interactions in the experiments and suggest conditions under which the effects of such interactions should appear.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature microparticle-based persistent spectral hole burning memory

S. Arnold, W. B. Whitten, J. M. Ramsey, and C. T. Liu
Opt. Lett. 16(6) 420-422 (1991)

Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glasses

Koji Fujita, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga
Opt. Lett. 23(7) 543-545 (1998)

Room-temperature grating-based morphological hole burning in Sm2+-doped glass powders

Koji Fujita, Yoshihiro Ohashi, and Kazuyuki Hirao
Opt. Lett. 28(7) 567-569 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription