Abstract

The dispersive kinetics of nonphotochemical burning and spontaneous filling of the zero-phonon hole of Cresyl Violet in polyvinyl alcohol at 1.6 K are analyzed in terms of the standard external two-level system (TLSezt) model for probe–glass systems and a distribution function for the tunnel frequency derived from a normal distribution function for the tunnel parameter λ. Average values for the relaxation rates for burning and filling are determined. It is shown that the dominant mechanism for filling is not global spectral diffusion but rather antihole reversion. A high degree of positive correlation between the rates of burning and filling associated with the TLSext is found. A new methodology that permits a more physically reasonable interpretation of spontaneous hole-filling kinetics is described. It is based on the hypothesis that only a fraction of burned sites, on reversion to the ground state, yield sites with resonance frequencies that lie within the hole profile.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 724 (1991).
    [CrossRef]
  2. R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
    [CrossRef]
  3. W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
    [CrossRef]
  4. R. Jankowiak and H. Bässler, J. Mol. Electron. 1, 73 (1985).
  5. A. Elschner and H. Bässler, Chem. Phys. 123, 305 (1988).
    [CrossRef]
  6. B. L. Fearey and G. J. Small, Chem. Phys. 101, 269 (1986).
    [CrossRef]
  7. M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
    [CrossRef]
  8. D. Haarer, in Persistent Spectral Hole Burning: Science and Application, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 97.
  9. W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
    [CrossRef]
  10. J. M. Hayes, R. Jankowiak, and G. J. Small, in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 153.
    [CrossRef]
  11. J. Jäckle, Z. Phys. 257, 212 (1972).
    [CrossRef]
  12. R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
    [CrossRef]
  13. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
    [CrossRef]
  14. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
    [CrossRef]
  15. R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
    [CrossRef]
  16. R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
    [CrossRef]
  17. R. Jankowiak and G. J. Small, Phys. Rev. B 37, 8407 (1988).
    [CrossRef]
  18. R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
    [CrossRef]
  19. R. Jankowiak and G. J. Small, Science 237, 618 (1987).
    [CrossRef] [PubMed]
  20. M. J. Kenney, “Nonphotochemical hole burning and dispersive kinetics in amorphous solids,” Ph.D. dissertation (Iowa State University, Ames, Iowa, 1990).
    [CrossRef]
  21. F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
    [CrossRef]
  22. L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 738 (1991).
    [CrossRef]
  23. J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
    [CrossRef]
  24. P. Reichert and R. Schilling, Phys. Rev. B 32, 5731 (1985).
    [CrossRef]
  25. J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
    [CrossRef]
  26. The value of σ was obtained by two approaches described in Ref. 6. In the first approach the standard quantum-mechanical expression for σ was used, and the transition dipole length of CV was calculated from the measured fluorescence decay constant, 1.8 × 108 s−1. The second approach scales the measured room-temperature value for σ of the origin band by the ratio of 1.6 K to room-temperature homogeneous linewidths. In both approaches the Franck–Condon factors (associated with origin band and matrix phonons) and orientation averaging have been taken into account.
  27. J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
    [CrossRef]
  28. L. Shu and G. J. Small, Chem. Phys. 141, 447 (1990).
    [CrossRef]
  29. J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978); Chem. Phys. Lett. 54, 435 (1978).
    [CrossRef]

1991 (2)

1990 (2)

M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
[CrossRef]

L. Shu and G. J. Small, Chem. Phys. 141, 447 (1990).
[CrossRef]

1988 (5)

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

A. Elschner and H. Bässler, Chem. Phys. 123, 305 (1988).
[CrossRef]

R. Jankowiak and G. J. Small, Phys. Rev. B 37, 8407 (1988).
[CrossRef]

R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
[CrossRef]

1987 (3)

R. Jankowiak and G. J. Small, Science 237, 618 (1987).
[CrossRef] [PubMed]

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
[CrossRef]

1986 (2)

R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
[CrossRef]

B. L. Fearey and G. J. Small, Chem. Phys. 101, 269 (1986).
[CrossRef]

1985 (4)

R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
[CrossRef]

R. Jankowiak and H. Bässler, J. Mol. Electron. 1, 73 (1985).

P. Reichert and R. Schilling, Phys. Rev. B 32, 5731 (1985).
[CrossRef]

1984 (1)

W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
[CrossRef]

1983 (1)

J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
[CrossRef]

1981 (1)

J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
[CrossRef]

1978 (1)

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978); Chem. Phys. Lett. 54, 435 (1978).
[CrossRef]

1972 (3)

P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
[CrossRef]

W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

J. Jäckle, Z. Phys. 257, 212 (1972).
[CrossRef]

Anderson, P. W.

P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
[CrossRef]

Athreya, K. B.

R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
[CrossRef]

Bässler, H.

A. Elschner and H. Bässler, Chem. Phys. 123, 305 (1988).
[CrossRef]

R. Jankowiak and H. Bässler, J. Mol. Electron. 1, 73 (1985).

R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Brauman, J. I.

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

Breinl, W.

W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
[CrossRef]

W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
[CrossRef]

Elschner, A.

A. Elschner and H. Bässler, Chem. Phys. 123, 305 (1988).
[CrossRef]

Fayer, M. D.

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

Fearey, B. L.

B. L. Fearey and G. J. Small, Chem. Phys. 101, 269 (1986).
[CrossRef]

Friedrich, J.

W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
[CrossRef]

W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
[CrossRef]

J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
[CrossRef]

Gillie, J. K.

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

Haarer, D.

W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
[CrossRef]

J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
[CrossRef]

D. Haarer, in Persistent Spectral Hole Burning: Science and Application, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 97.

Halperin, B. I.

P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
[CrossRef]

Hayes, J. M.

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
[CrossRef]

J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
[CrossRef]

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978); Chem. Phys. Lett. 54, 435 (1978).
[CrossRef]

J. M. Hayes, R. Jankowiak, and G. J. Small, in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 153.
[CrossRef]

Jäckle, J.

J. Jäckle, Z. Phys. 257, 212 (1972).
[CrossRef]

Jankowiak, R.

M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
[CrossRef]

R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
[CrossRef]

R. Jankowiak and G. J. Small, Phys. Rev. B 37, 8407 (1988).
[CrossRef]

R. Jankowiak and G. J. Small, Science 237, 618 (1987).
[CrossRef] [PubMed]

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
[CrossRef]

R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
[CrossRef]

R. Jankowiak and H. Bässler, J. Mol. Electron. 1, 73 (1985).

R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

J. M. Hayes, R. Jankowiak, and G. J. Small, in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 153.
[CrossRef]

Kenney, M. J.

M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
[CrossRef]

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

M. J. Kenney, “Nonphotochemical hole burning and dispersive kinetics in amorphous solids,” Ph.D. dissertation (Iowa State University, Ames, Iowa, 1990).
[CrossRef]

Köhler, W.

W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
[CrossRef]

Kokai, F.

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

Phillips, W. A.

W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

Rechert, R.

R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Reichert, P.

P. Reichert and R. Schilling, Phys. Rev. B 32, 5731 (1985).
[CrossRef]

Ries, B.

R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
[CrossRef]

Schilling, R.

P. Reichert and R. Schilling, Phys. Rev. B 32, 5731 (1985).
[CrossRef]

Shu, L.

L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 738 (1991).
[CrossRef]

L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 724 (1991).
[CrossRef]

L. Shu and G. J. Small, Chem. Phys. 141, 447 (1990).
[CrossRef]

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

Silbey, R.

J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
[CrossRef]

Small, G. J.

L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 738 (1991).
[CrossRef]

L. Shu and G. J. Small, J. Opt. Soc. Am. B 9, 724 (1991).
[CrossRef]

M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
[CrossRef]

L. Shu and G. J. Small, Chem. Phys. 141, 447 (1990).
[CrossRef]

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

R. Jankowiak and G. J. Small, Phys. Rev. B 37, 8407 (1988).
[CrossRef]

R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
[CrossRef]

R. Jankowiak and G. J. Small, Science 237, 618 (1987).
[CrossRef] [PubMed]

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
[CrossRef]

R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
[CrossRef]

B. L. Fearey and G. J. Small, Chem. Phys. 101, 269 (1986).
[CrossRef]

J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
[CrossRef]

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978); Chem. Phys. Lett. 54, 435 (1978).
[CrossRef]

J. M. Hayes, R. Jankowiak, and G. J. Small, in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 153.
[CrossRef]

Stout, R. P.

J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
[CrossRef]

Tanaka, H.

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

Tang, D.

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

Varma, C. M.

P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
[CrossRef]

Biochem. Biophys. Acta (1)

J. M. Hayes, J. K. Gillie, D. Tang, and G. J. Small, Biochem. Biophys. Acta 932, 287 (1988).
[CrossRef]

Chem. Phys. (6)

L. Shu and G. J. Small, Chem. Phys. 141, 447 (1990).
[CrossRef]

J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978); Chem. Phys. Lett. 54, 435 (1978).
[CrossRef]

A. Elschner and H. Bässler, Chem. Phys. 123, 305 (1988).
[CrossRef]

B. L. Fearey and G. J. Small, Chem. Phys. 101, 269 (1986).
[CrossRef]

M. J. Kenney, R. Jankowiak, and G. J. Small, Chem. Phys. 146, 47 (1990).
[CrossRef]

R. Jankowiak, G. J. Small, and B. Ries, Chem. Phys. 118, 223 (1987).
[CrossRef]

Chem. Phys. Lett. (3)

W. Breinl, J. Friedrich, and D. Haarer, Chem. Phys. Lett. 106, 487 (1984).
[CrossRef]

J. Friedrich, D. Haarer, and R. Silbey, Chem. Phys. Lett. 95, 11 (1983).
[CrossRef]

F. Kokai, H. Tanaka, J. I. Brauman, and M. D. Fayer, Chem. Phys. Lett. 143, 1 (1988).
[CrossRef]

J. Chem. Phys. (2)

J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981).
[CrossRef]

W. Köhler, W. Breinl, and J. Friedrich, J. Chem. Phys. 82, 2935 (1985).
[CrossRef]

J. Low Temp. Phys. (1)

W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[CrossRef]

J. Lumin. (1)

R. Jankowiak, L. Shu, M. J. Kenney, and G. J. Small, J. Lumin. 36, 293 (1987).
[CrossRef]

J. Mol. Electron. (1)

R. Jankowiak and H. Bässler, J. Mol. Electron. 1, 73 (1985).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (2)

R. Jankowiak, G. J. Small, and K. B. Athreya, J. Phys. Chem. 90, 3896 (1986).
[CrossRef]

R. Jankowiak, R. Rechert, and H. Bässler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Philos. Mag. (1)

P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).
[CrossRef]

Phys. Rev. B (3)

R. Jankowiak and G. J. Small, Phys. Rev. B 37, 8407 (1988).
[CrossRef]

R. Jankowiak, J. M. Hayes, and G. J. Small, Phys. Rev. B 38, 2084 (1988).
[CrossRef]

P. Reichert and R. Schilling, Phys. Rev. B 32, 5731 (1985).
[CrossRef]

Science (1)

R. Jankowiak and G. J. Small, Science 237, 618 (1987).
[CrossRef] [PubMed]

Z. Phys. (1)

J. Jäckle, Z. Phys. 257, 212 (1972).
[CrossRef]

Other (4)

The value of σ was obtained by two approaches described in Ref. 6. In the first approach the standard quantum-mechanical expression for σ was used, and the transition dipole length of CV was calculated from the measured fluorescence decay constant, 1.8 × 108 s−1. The second approach scales the measured room-temperature value for σ of the origin band by the ratio of 1.6 K to room-temperature homogeneous linewidths. In both approaches the Franck–Condon factors (associated with origin band and matrix phonons) and orientation averaging have been taken into account.

M. J. Kenney, “Nonphotochemical hole burning and dispersive kinetics in amorphous solids,” Ph.D. dissertation (Iowa State University, Ames, Iowa, 1990).
[CrossRef]

J. M. Hayes, R. Jankowiak, and G. J. Small, in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 153.
[CrossRef]

D. Haarer, in Persistent Spectral Hole Burning: Science and Application, W. E. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hole-growth curves of CV in PVOH at 1.6 K for various burn intensities IB: 3, 15, 30, and 200 μW/cm2 (from top to bottom). The dots, crosses, stars, and circles represent theoretical fits. For all simulations a single set of parameters, λ0 = 9.85, σ0 = 1.3, Ω0 = 1012 s−1, σ0 = 20 × 10−12 cm2, and S = 0.7, was used. The OD of sample is ~0.35 (at 632.8 nm, He–Ne line).

Fig. 2
Fig. 2

Hole growth and SPHF for CV in PVOH at 1.6 K. See text for an explanation and discussion.

Fig. 3
Fig. 3

Comparison of the hole-growth curves for the first and the second burns (filled circles and crosses, respectively). The data are obtained from Fig. 2; see text.

Fig. 4
Fig. 4

Relative SPHF data for CV in PVOH for two ZPH’s of different depths. Filled circles and crosses are data (ΔOD of filling divided by the OD of the initial ZPH) for ZPH’s of initial fractional hole depths of 0.25 and 0.36, respectively (IB = 3 μW/cm2, tB = 3 min; IB = 13 μW/cm2, tB = 3 min).

Fig. 5
Fig. 5

Dashed curve is the theoretical simulation obtained with λ0 = 16.6 and σ2 = 1.3; see text. The absolute hole-filling value of 0.00 corresponds to the ZPH hole depth before blocking of the laser; i.e., the origin is a data point.

Fig. 6
Fig. 6

Comparison of hole-growth curves for initial burn and reburn (filled circles and crosses). Data are obtained from Fig. 2; see text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = Ω 0 exp ( - 2 λ ) ,
D ( t ) = 0 Ω 0 d R f ( R ) exp [ - P σ ϕ ( R ) t ] ,
D ( t ) = ( 2 π ) - 1 / 2 - + d x exp ( - x 2 / 2 ) exp [ - 0 ξ ( x ) t ] ,
D ( t ) = ( 2 π ) - 1 / 2 - + d x exp ( - x 2 / 2 ) exp [ - Ω 0 ξ ( x ) t ] ,

Metrics