Abstract

Linear and quadratic nonlinear-optical (NLO) properties of a new organic–inorganic crystal, 2-amino-5-nitro-pyridinium-dihydrogen phosphate (2A5NPDP), are reported. 2A5NPDP was designed to display high NLO efficiency by incorporating highly polarizable organic molecules arranged in a polar order between phosphate polyanion sheets. The material is transparent in the visible and the near-IR (from 0.42 to 2 μm) with favorable phase-matching (PM) conditions for second-harmonic generation in the 1-μm region. Crystal nonlinear coefficients responsible for PM were determined by the Maker fringe method, leading at 1.06 μm to d15 ≅ 7.2 pm/V and d24 ≅ 1.3 pm/V. The measured crystal coefficients significantly depart from oriented gas model calculations based on molecular hyperpolarizability values measured in an aprotic solution, thus suggesting important crystal-field effects and protonation contributions. Thermal sensitivity of the PM angle at 1.34 μm is found to be 155″/°C, which is considerably larger than typical values of inorganic NLO crystals and opens the way to efficient thermal tuning of phase-matched processes.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983).
    [CrossRef]
  2. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vols. 1 and 2.
  3. D. Eimerl, Ferroelectrics,  72, 95 (1987).
    [CrossRef]
  4. R. Masse and J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 94, 437 (1971); I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974); J. Beierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  5. M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
    [CrossRef]
  6. J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
    [CrossRef]
  7. J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
    [CrossRef]
  8. I. Ledoux, J. Badan, J. Zyss, A. Migus, D. Hulin, J. Etchepare, G. Grillon, and A. Antonetti, J. Opt. Soc. Am. B 4, 987 (1987).
    [CrossRef]
  9. J. Zyss and D. S. Chemla, Ref. 2, Vol. 1.
  10. J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
    [CrossRef]
  11. R. Masse and J. Zyss, Mol. Eng. 1(2), 141 (1991).
    [CrossRef]
  12. C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
    [CrossRef]
  13. D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
    [CrossRef]
  14. G. R. Meredith, Ref. 1, p. 30.
  15. S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
    [CrossRef]
  16. M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
    [CrossRef]
  17. For the EFISHG experimental setup see M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, J. Opt. Soc. Am. B 4, 977 (1987). For the crystal MF study see Ref. 18.
    [CrossRef]
  18. D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
    [CrossRef]
  19. J. F. Nicoud and R. Twieg, in Ref. 2, Vol. 1, p. 279.
  20. The conversion factor between esu units and SI units to be used throughout the paper is given by χ(2)(SI)/χ(2)(esu) = 4π/(10−4c)2, where c= 3 × 108 is the velocity of light [see, e.g., P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), App. 2, p. 298].
    [CrossRef]
  21. R. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974); J. L. Oudar and H. Le Person, Opt. Commun. 19, 258 (1975).
    [CrossRef]
  22. M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).
  23. J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
    [CrossRef]
  24. M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
    [CrossRef]
  25. F. Bréhat and B. Wyncke, J. Phys. B. 22, 1891 (1989).
    [CrossRef]
  26. J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
    [CrossRef]
  27. J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
    [CrossRef]
  28. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
    [CrossRef]
  29. M. S. Webb and S. P. Velsko, IEEE J. Quantum Electron. 26, 1394 (1990).
    [CrossRef]
  30. A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
    [CrossRef]
  31. D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
    [CrossRef]

1991 (1)

R. Masse and J. Zyss, Mol. Eng. 1(2), 141 (1991).
[CrossRef]

1990 (2)

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

M. S. Webb and S. P. Velsko, IEEE J. Quantum Electron. 26, 1394 (1990).
[CrossRef]

1989 (4)

F. Bréhat and B. Wyncke, J. Phys. B. 22, 1891 (1989).
[CrossRef]

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
[CrossRef]

1988 (2)

M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
[CrossRef]

D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
[CrossRef]

1987 (4)

1986 (1)

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

1984 (2)

J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

1982 (1)

J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
[CrossRef]

1981 (1)

J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

1977 (2)

M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
[CrossRef]

J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
[CrossRef]

1974 (1)

R. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974); J. L. Oudar and H. Le Person, Opt. Commun. 19, 258 (1975).
[CrossRef]

1971 (1)

R. Masse and J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 94, 437 (1971); I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974); J. Beierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

1970 (1)

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

1967 (1)

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

Aakeroy, C. B.

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

Antonetti, A.

Avcrbuch-Pouchot, M. T.

M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
[CrossRef]

Badan, J.

Barzoukas, M.

For the EFISHG experimental setup see M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, J. Opt. Soc. Am. B 4, 977 (1987). For the crystal MF study see Ref. 18.
[CrossRef]

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

Bethea, C. G.

R. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974); J. L. Oudar and H. Le Person, Opt. Commun. 19, 258 (1975).
[CrossRef]

Bosenberg, W. R.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

Bréhat, F.

F. Bréhat and B. Wyncke, J. Phys. B. 22, 1891 (1989).
[CrossRef]

Butcher, P. N.

The conversion factor between esu units and SI units to be used throughout the paper is given by χ(2)(SI)/χ(2)(esu) = 4π/(10−4c)2, where c= 3 × 108 is the velocity of light [see, e.g., P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), App. 2, p. 298].
[CrossRef]

Chemla, D. S.

J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

J. Zyss and D. S. Chemla, Ref. 2, Vol. 1.

Coquillay, M.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

Cotter, D.

The conversion factor between esu units and SI units to be used throughout the paper is given by χ(2)(SI)/χ(2)(esu) = 4π/(10−4c)2, where c= 3 × 108 is the velocity of light [see, e.g., P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), App. 2, p. 298].
[CrossRef]

Davis, L.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Durif, A.

M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
[CrossRef]

Eimerl, D.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

D. Eimerl, Ferroelectrics,  72, 95 (1987).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Etchepare, J.

Fahlen, T. S.

J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

Fremaux, P.

Frenaux, P.

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

Graham, E.

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Grenier, J. C.

R. Masse and J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 94, 437 (1971); I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974); J. Beierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

Grillon, G.

Guitel, J. C.

M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
[CrossRef]

Hierle, R.

D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
[CrossRef]

Hitchcock, P. B.

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

Hobden, M. V.

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

Hulin, D.

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Josse, D.

D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
[CrossRef]

For the EFISHG experimental setup see M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, J. Opt. Soc. Am. B 4, 977 (1987). For the crystal MF study see Ref. 18.
[CrossRef]

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

Kajzar, F.

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

Kennedy, G.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

Kubota, T.

M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Lane, R. J.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

Ledoux, I.

Levine, R. F.

R. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974); J. L. Oudar and H. Le Person, Opt. Commun. 19, 258 (1975).
[CrossRef]

Loiacono, G.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

Marder, S. R.

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
[CrossRef]

Masse, R.

R. Masse and J. Zyss, Mol. Eng. 1(2), 141 (1991).
[CrossRef]

R. Masse and J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 94, 437 (1971); I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974); J. Beierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

Meredith, G. R.

G. R. Meredith, Ref. 1, p. 30.

Migus, A.

Morley, J. O.

Moyle, B. D.

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

Nicoud, J. F.

For the EFISHG experimental setup see M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, J. Opt. Soc. Am. B 4, 977 (1987). For the crystal MF study see Ref. 18.
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

J. F. Nicoud and R. Twieg, in Ref. 2, Vol. 1, p. 279.

Oudar, J. L.

J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
[CrossRef]

J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
[CrossRef]

Perry, J. W.

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
[CrossRef]

Sasaki, T.

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

Schaefer, W. P.

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
[CrossRef]

Seddon, K. R.

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

Shiro, M.

M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
[CrossRef]

Tang, C. L.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

Twieg, R.

J. F. Nicoud and R. Twieg, in Ref. 2, Vol. 1, p. 279.

Ukachi, T.

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

Velsko, S.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Velsko, S. P.

M. S. Webb and S. P. Velsko, IEEE J. Quantum Electron. 26, 1394 (1990).
[CrossRef]

Wang, F.

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

Webb, M. S.

M. S. Webb and S. P. Velsko, IEEE J. Quantum Electron. 26, 1394 (1990).
[CrossRef]

Wyncke, B.

F. Bréhat and B. Wyncke, J. Phys. B. 22, 1891 (1989).
[CrossRef]

Yamakawa, M.

M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
[CrossRef]

Yamanaka, C.

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

Yamanaka, T.

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

Yao, J. Q.

J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

Yokatani, A.

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Zyss, J.

R. Masse and J. Zyss, Mol. Eng. 1(2), 141 (1991).
[CrossRef]

D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
[CrossRef]

For the EFISHG experimental setup see M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, J. Opt. Soc. Am. B 4, 977 (1987). For the crystal MF study see Ref. 18.
[CrossRef]

I. Ledoux, J. Badan, J. Zyss, A. Migus, D. Hulin, J. Etchepare, G. Grillon, and A. Antonetti, J. Opt. Soc. Am. B 4, 987 (1987).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

J. Zyss and D. S. Chemla, Ref. 2, Vol. 1.

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

Acta Crystallogr. B (1)

M. Shiro, M. Yamakawa, and T. Kubota, Acta Crystallogr. B 33, 1549 (1977).
[CrossRef]

Acta Crystallogr. C (1)

M. T. Avcrbuch-Pouchot, A. Durif, and J. C. Guitel, Acta Crystallogr. C 44, 99 (1988).
[CrossRef]

Appl. Phys. Lett. (3)

D. Josse, R. Hierle, I. Ledoux, and J. Zyss, Appl. Phys. Lett. 33, 2251 (1988).
[CrossRef]

R. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974); J. L. Oudar and H. Le Person, Opt. Commun. 19, 258 (1975).
[CrossRef]

T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, Appl. Phys. Lett. 57, 980 (1990).
[CrossRef]

Bull. Soc. Fr. Mineral. Cristallogr. (1)

R. Masse and J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallogr. 94, 437 (1971); I. Tordjman, R. Masse, and J. C. Guitel, Z. Kristallogr. 139, 103 (1974); J. Beierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

Ferroelectrics (1)

D. Eimerl, Ferroelectrics,  72, 95 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, and G. Kennedy, IEEE J. Quantum Electron. 25, 179 (1989).
[CrossRef]

M. S. Webb and S. P. Velsko, IEEE J. Quantum Electron. 26, 1394 (1990).
[CrossRef]

J. Appl. Phys. (4)

D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

J. Q. Yao and T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

J. Chem. Phys. (3)

J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Chem. Soc. Chem. Commun. (1)

C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle, and K. R. Seddon, J. Chem. Soc. Chem. Commun. 23, 1856 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B. (1)

F. Bréhat and B. Wyncke, J. Phys. B. 22, 1891 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Yokatani, T. Sasaki, T. Yamanaka, and C. Yamanaka, Jpn. J. Appl. Phys. 25, 161 (1986).
[CrossRef]

Mol. Eng. (1)

R. Masse and J. Zyss, Mol. Eng. 1(2), 141 (1991).
[CrossRef]

Phys. Rev. A (1)

J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
[CrossRef]

Science (1)

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 627 (1989).
[CrossRef]

Other (7)

G. R. Meredith, Ref. 1, p. 30.

J. Zyss and D. S. Chemla, Ref. 2, Vol. 1.

P. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983).
[CrossRef]

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vols. 1 and 2.

M. Barzoukas, P. Frenaux, D. Josse, F. Kajzar, and J. Zyss, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, and D. R. Ulrich, eds., Mater. Res. Soc. Symp. Proc.109(1988).

J. F. Nicoud and R. Twieg, in Ref. 2, Vol. 1, p. 279.

The conversion factor between esu units and SI units to be used throughout the paper is given by χ(2)(SI)/χ(2)(esu) = 4π/(10−4c)2, where c= 3 × 108 is the velocity of light [see, e.g., P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), App. 2, p. 298].
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Crystal structure of 2A5NPDP: projection into the ac plane showing the organic cation orientational ordering with respect to the twofold c axis. The tetrahedra represent phosphate anions.

Fig. 2
Fig. 2

Crystal structure of 2A5NPDP: projection into the ab plane. The hydrogenic bonds connecting the organic cations to the phosphate groups are shown as dashed lines.

Fig. 3
Fig. 3

Optical transmission spectrum of a 1.37-mm-thick 2A5NPDP (010) plate. The solid and dashed curves correspond to polarization in the x(a) and z(c) directions, respectively.

Fig. 4
Fig. 4

Linear absorption spectra in the near-IR of a 2A5NPDP crystal (same orientations as in Fig. 3). The ordinate is in units of −ln(I/I0).

Fig. 5
Fig. 5

Refractive-index dispersion curves. The points are measured values, while the curve fit is given by a single-pole Sellmeier equation (see the text).

Fig. 6
Fig. 6

PM curves for propagation in the crystal principal planes YZ, ZX, and XY: type I PM (solid curves), type II PM (dashed curves), and nonefficient PM (dotted curves). The numbering of the PM lines corresponds to that given in Table 4. Dashed–dotted curves indicate extrapolations of the PM curves to wavelengths longer than 1.5 μm. In this region the PM curves should be considered indicative of the true PM curves.

Fig. 7
Fig. 7

SHG MF’s at 1.06 μm. (a) 2.78-mm plate (010) and propagation scheme as shown in Fig. 10(a) below for the determination of d15. (b) 1.08-mm plate (010) and propagation scheme as shown in Fig. 10(d) for the determination of d24.

Fig. 8
Fig. 8

SHG MF’s at 1.34 μm found from a 2.78-mm-thick plate (010). (a) Propagation scheme shown in Fig. 10(e) below for the determination of d33 (b) Propagation scheme shown in Fig. 10(a) for the determination of d15.

Fig. 9
Fig. 9

Calculated type I PM conditions for out-of-plane SHG at 1.06 μm as a function of the (Θ, Φ) angles and the corresponding value of deff.

Fig. 10
Fig. 10

Schematic description of the propagation directions and wave polarizations used with different crystal plates in order to determine the dij coefficients. The active nonlinear coefficients corresponding to each configuration are (a) d15, (b) d15 and d24, (c) d15 and d24, (d) d24, and (e) d33.

Fig. 11
Fig. 11

Out-of-plane SHG (as in Fig. 9) for 1.34-μm fundamental radiation. (a)Type I PM, (b) type II PM.

Fig. 12
Fig. 12

MF’s from circularly polarized 1.34-μm radiation in the XZ plane for a 1.06-mm-thick (100) plate [see Fig. 10(e)]. The external angle θ is relative to the X axis with the plate rotated about the Y axis. The saturated intense peaks at 35.4° correspond to type II PM. The full PM intensity line is shown in the inset along with the two nearest fringes.

Fig. 13
Fig. 13

Theoretical fit to the SHG intensity pattern shown in Fig. 12 using Eq. (14).

Fig. 14
Fig. 14

MF pattern for 1.06-μm fundamental radiation and a 2.78-mm plate (010). The propagation scheme is identical to the PM configuration in the XY principal plane close to the Y principal axis [see the scheme in Fig. 10(b)].

Fig. 15
Fig. 15

Same as Fig. 14 but with a 1.08-mm (100) sample. At normal incidence the propagation is along the X principal axis [see the scheme in Fig. 10(c)].

Fig. 16
Fig. 16

Calculated type II PM curves with propagation in (θ = 90°) and out (θ = 80°, 78°, 77.5°, 76°) of the XY principal plane, demonstrating the conditions for angle noncriticality.

Fig. 17
Fig. 17

Constant-phase curves for propagation in the three principal dielectric planes. Propagation configurations conform in each plane to the corresponding type II PM. The dashed curved line is the PM curves, and the solid curves are the constant-phase curves corresponding to Ψ = (2m + 1)π/2, m = 0, ±1, ±2, … (see the text).

Fig. 18
Fig. 18

Calculated collinear type I sum-frequency mixing PM of 1.34- and 0.67-μm waves for out-of-plane propagation. The dotted curve gives the calculated PM angles (Θ, Φ). The curve of crosses gives the corresponding value of deff.

Fig. 19
Fig. 19

Shift of PM SHG intensity pattern as a function of the crystal temperature in the case of type II PM in the ZX plane (1.34 μm). θ is the external angle measured from the normal to the bc plane. Results are shown for three temperature values.

Fig. 20
Fig. 20

PM angle dependence on crystal temperature (same PM case as in Fig. 19). The dots are the experimental points, while the curve is a linear fit.

Tables (6)

Tables Icon

Table 1 Refractive Indices of 2A5NPDP at Various Wavelengths

Tables Icon

Table 2 Sellmeier Coefficients for 2A5NPDP

Tables Icon

Table 3 Experimental β Values of the 2A5NP Molecule as Found from EFISHG Measurements with Acetone as a Solvent and Theoretical Values as Found from SCF-CI Molecular Structure Calculationsa

Tables Icon

Table 4 List of PM Conditions and deff for Propagation in the Principal Dielectric Planesa

Tables Icon

Table 5 Experimental and Theoretical dij (dij = d33, d24, d15) Values of 2A5NPDPa

Tables Icon

Table 6 Comparison of Thermal Sensitivity of the Type II PM Angle in 2A5NPDP with That of Several Other Mineral NLO Materials

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

n 2 = A + B λ 2 λ 2 - C + D λ 2 ,
Γ L ( x ) = 1 l c ( x ) { [ I ( x ) I ( 0 ) ] 1 / 2 [ l c ( 0 ) Γ L ( 0 ) - α ] + α } ,
β 2 β 1 = ( 1 λ 0 2 - 1 λ 1 2 ) ( 1 λ 0 2 - 4 λ 1 2 ) ( 1 λ 0 2 - 1 λ 2 2 ) ( 1 λ 0 2 - 4 λ 2 2 ) ,
P x 2 ω = 2 ɛ 0 d 15 E x ω E z ω ,
P y 2 ω = 2 ɛ 0 d 24 E y ω E z ω ,
P z 2 ω = ɛ 0 d 31 ( E x ω ) + ɛ 0 d 32 ( E y ω ) 2 + d 33 ( E z ω ) 2 .
d 15 = d 31 ,             d 24 = d 32 .
d i j k = ( N / N a ) f i 2 ω f j ω f k ω p cos Ω i p cos Ω j p cos Ω k p ( β ν p ) ,
d 33 = 87.1 pm / V ,             d 32 = 12.8 pm / V , d 31 = 28.3 pm / V ,             d 15 = 27.8 pm / V , d 24 = 12.5 pm / V ;
d 33 = 122.5 pm / V , d 32 = 16.3 pm / V , d 31 = 35.6 pm / V d 15 = 35.3 pm / V , d 24 = 15.9 pm / V .
d eff I = 2 d 15 cos α 2 ω , 1 cos α ω , 2 cos γ ω , 2 + 2 d 24 cos β 2 ω , 1 cos β ω , 2 cos γ ω , 2 + d 31 cos γ 2 ω , 1 cos 2 α ω , 2 + d 32 cos γ 2 ω , 1 cos 2 β ω , 2 + d 33 cos γ 2 ω , 1 cos 2 γ ω , 2 ,
d eff II = d 15 ( cos α 2 ω , 1 ) ( cos α ω , 1 cos γ ω , 2 + cos α ω , 2 cos γ ω , 1 ) + d 24 ( cos β 2 ω , 1 ) × ( cos β ω , 1 cos γ ω , 2 + cos β ω , 2 cos γ ω , 1 ) + d 31 cos γ 2 ω , 1 cos α ω , 1 cos α ω , 2 + d 32 cos γ 2 ω , 1 cos β ω , 1 cos β ω , 2 + d 33 cos γ 2 ω , 1 cos γ ω , 1 cos γ ω , 2 .
d eff II = d 15 sin θ .
I 2 ω ( θ ) = 2 c π P 2 ω 2 [ n ¯ ω 2 ( θ ) - n 2 ω 2 ] 2 { 8 n 2 ω ( cos θ 2 ω ) [ cos θ + n ¯ ω ( θ ) cos θ ¯ ω ] [ n ¯ ω ( θ ) cos θ ¯ ω + n 2 ω cos θ 2 ω ] ( n 2 ω cos θ 2 ω + cos θ ) 3 sin 2 Ψ } + { [ n ¯ ω ( θ ) cos θ ¯ ω - n 2 ω cos θ 2 ω ] 2 ( n 2 ω cos θ 2 ω + cos θ ) 4 ( n 2 ω cos θ 2 ω - cos θ ) 2 } .
Ψ = ( 2 π L / λ ) [ n ¯ ω ( θ ) cos θ ¯ ω - n 2 ω cos θ 2 ω ] ,
n ¯ ω ( θ ) cos θ ¯ ω = 1 / 2 [ n ω o cos θ ω o + n ω e ( θ ) cos θ ω e ] ,
P y , 2 ω = 2 ɛ 0 d 24 E y ( ω ) E z ( ω ) ,
t ( θ ) = 2 cos θ n ω e cos θ + cos θ ω ,
t ( θ ) = 2 cos θ n ω o cos θ ω o + cos θ .
n ω e ( θ ) = n z [ 1 - ( sin 2 θ ) ( 1 / n x 2 - 1 / n z 2 ) ] 1 / 2 ,
P 2 ω = 2 ɛ 0 d 15 E x ω E z ω cos ϕ 2 ω + 2 ɛ 0 d 24 E y ω E z ω sin ϕ 2 ω ,
P 2 ω = 2 ɛ 0 d 15 E x ω E z ω sin ϕ 2 ω + 2 ɛ 0 d 24 E y ω E z ω cos ϕ 2 ω .
n x y 2 ω ( ϕ ) = 1 / 2 [ n x y ω ( ϕ ) + n z ω ]
n y 2 ω - n x 2 ω 1 / 2 ( n y ω - n x ω ) .
Ψ = Δ k L = ( π / 2 ) ( L / l c ) ,
l c = λ / ( 4 Δ n )
L / l c = 2 m + 1
n 2 ( 3 ω ) = 1 / 2 [ n 1 ( 2 ω ) + n 1 ( ω ) ] ,

Metrics