Abstract

The performance of a phase-conjugate cavity using a stimulated Brillouin scattering (SBS) reflector to control the spatial and spectral output of a coaxial flash-lamp-pumped dye laser is reported. The divergence of the output from the phase-conjugate laser cavity was measured and shown to be a significant improvement over that of the conventional resonator. Both gaseous and liquid nonlinear materials were used as the SBS media. With the gaseous medium periods of oscillation exceeding 1 μs were observed, which is longer than the FWHM duration of the output from the comparable conventional resonator.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “Efficient high-energy SHG using a triaxial flashlamp-pumped dye laser,” Appl. Opt. 19, 124–126 (1980).
    [CrossRef] [PubMed]
  2. J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
    [CrossRef]
  3. L. Goldman, “Dye lasers in medicine,” in Dye Laser Principles: with Applications, F. J. Duarte, L. W. Hillman, eds. (Academic, London, 1990), pp. 419–432.
    [CrossRef]
  4. B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
    [CrossRef]
  5. T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
    [CrossRef]
  6. S. Blit, A. Fisher, U. Ganiel, “Early termination of flash-lamp pumped dye laser pulses by shock wave formation,” Appl. Opt. 13, 335–340 (1974).
    [CrossRef] [PubMed]
  7. A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
    [CrossRef]
  8. M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
    [CrossRef]
  9. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516–518 (1980).
    [CrossRef] [PubMed]
  10. O. N. Krokhin, “Generation of high-temperature vapors and plasmas by laser radiation,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1371–1407.
  11. S. Blit, U. Ganiel, “Distribution of absorbed power in flashlamp-pumped dye lasers,” Opt. Quantum Electron. 7, 87–93 (1975).
    [CrossRef]
  12. L. P. Schelonka, C. M. Clayton, “Effect of focal intensity on stimulated Brillouin scattering reflectivity and fidelity,” Opt. Lett. 13, 42–44 (1988).
    [CrossRef] [PubMed]
  13. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.
  14. M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
    [CrossRef]

1989 (2)

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

1988 (1)

1987 (1)

M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
[CrossRef]

1984 (1)

J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

1980 (2)

1975 (1)

S. Blit, U. Ganiel, “Distribution of absorbed power in flashlamp-pumped dye lasers,” Opt. Quantum Electron. 7, 87–93 (1975).
[CrossRef]

1974 (1)

1973 (1)

T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
[CrossRef]

1969 (1)

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Blit, S.

S. Blit, U. Ganiel, “Distribution of absorbed power in flashlamp-pumped dye lasers,” Opt. Quantum Electron. 7, 87–93 (1975).
[CrossRef]

S. Blit, A. Fisher, U. Ganiel, “Early termination of flash-lamp pumped dye laser pulses by shock wave formation,” Appl. Opt. 13, 335–340 (1974).
[CrossRef] [PubMed]

Case, A. D.

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

Clayton, C. M.

Damzen, M. J.

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
[CrossRef]

Davis, J. I.

J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Emmett, J. L.

J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Ewanizky, T. F.

T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
[CrossRef]

Fisher, A.

Ganiel, U.

S. Blit, U. Ganiel, “Distribution of absorbed power in flashlamp-pumped dye lasers,” Opt. Quantum Electron. 7, 87–93 (1975).
[CrossRef]

S. Blit, A. Fisher, U. Ganiel, “Early termination of flash-lamp pumped dye laser pulses by shock wave formation,” Appl. Opt. 13, 335–340 (1974).
[CrossRef] [PubMed]

Goldman, L.

L. Goldman, “Dye lasers in medicine,” in Dye Laser Principles: with Applications, F. J. Duarte, L. W. Hillman, eds. (Academic, London, 1990), pp. 419–432.
[CrossRef]

Hon, D. T.

Hutchinson, M. H. R.

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
[CrossRef]

Kaiser, W.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Krokhin, O. N.

O. N. Krokhin, “Generation of high-temperature vapors and plasmas by laser radiation,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1371–1407.

Krupke, W. F.

J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

Maier, M.

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Osborne, M. R.

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

Schelonka, L. P.

Schotland, R. M.

Schroeder, W. A.

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
[CrossRef]

Snavely, B. B.

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Theissing, H. H.

T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
[CrossRef]

Wright, R. H.

T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. R. Osborne, W. A. Schroeder, M. J. Damzen, M. H. R. Hutchinson, “Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity,” Appl. Phys. B 48, 351–356 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

T. F. Ewanizky, R. H. Wright, H. H. Theissing, “Shock-wave termination of laser action in coaxial flashlamp dye lasers,” Appl. Phys. Lett. 22, 520–521 (1973).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. L. Emmett, W. F. Krupke, J. I. Davis, “Laser R+D at the Lawrence Livermore National Laboratory for fusion and isotope separation applications,” IEEE J. Quantum Electron. QE-20, 591–602 (1984).
[CrossRef]

M. J. Damzen, M. H. R. Hutchinson, W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” IEEE J. Quantum Electron. QE-20, 328–334 (1987).
[CrossRef]

Opt. Commun. (1)

A. D. Case, M. R. Osborne, M. J. Damzen, M. H. R. Hutchinson, “A flashlamp-pumped dye laser with a SBS phase-conjugate resonator,” Opt. Commun. 69, 311–314 (1989).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Blit, U. Ganiel, “Distribution of absorbed power in flashlamp-pumped dye lasers,” Opt. Quantum Electron. 7, 87–93 (1975).
[CrossRef]

Proc. IEEE (1)

B. B. Snavely, “Flashlamp-excited organic dye lasers,” Proc. IEEE 57, 1374–1390 (1969).
[CrossRef]

Other (3)

W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

O. N. Krokhin, “Generation of high-temperature vapors and plasmas by laser radiation,” in Laser Handbook, F. T. Arrechi, E. O. Shulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1371–1407.

L. Goldman, “Dye lasers in medicine,” in Dye Laser Principles: with Applications, F. J. Duarte, L. W. Hillman, eds. (Academic, London, 1990), pp. 419–432.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the PCR experimental setup.

Fig. 2
Fig. 2

Typical temporal output from (a) the PCR using C2F6 as the SBS medium (100 ns/div) and (b) a conventional resonator.

Fig. 3
Fig. 3

Portion of the output from the PCR, recorded with a high temporal resolution (10 ns/div). Note how the pulse structure evolves with successive cavity round trips.

Fig. 4
Fig. 4

Output from the conventional resonator (solid curve) and the period in which phase-conjugate oscillation was achieved (solid straight line) together with the transmission of the dye cell (dashed line). The common time axis is the time elapsed since initiation of the amplifier discharge.

Fig. 5
Fig. 5

Typical temporal output of the PCR with n-hexane as the SBS medium (5 ns/div). The limited period of oscillation is typical of that when liquid SBS media are used.

Fig. 6
Fig. 6

(a) Near-field and (b) far-field transverse structures of the output from the PCR.

Fig. 7
Fig. 7

Temporal output of the PCR after transmission through a Fabry–Perot interferometer (100 ns/div).

Fig. 8
Fig. 8

Frequency shift of the SBS process as a function of the C2F6 gas pressure.

Fig. 9
Fig. 9

Variation in the SBS mirror reflectivity with round trips at the start of an oscillation. Three separate sets of data are plotted. These data include the Fresnel losses that are due to the uncoated SBS cell window.

Metrics