Abstract

Spectra of the copperlike ions Sb22+ and Te23+ were observed with a laser-produced plasma and a 10.7-m grazing-incidence spectrograph. Wavelengths, energy levels for all n = 4 and n = 5 configurations, and ionization energies were determined for each ion. For Sb22+, the 6g levels were also determined. Wavelengths for the 4s–4p resonance lines are compared with recent measurements [ J. Opt. Soc. Am. B 8, 1799 ( 1991)] obtained with a tokamak plasma and with semiempirical values [ Phys. Rev, A44, 148 ( 1991)] obtained from smoothed corrections to relativistic calculations.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sugar, V. Kaufman, D. H. Baik, Y.-K. Kim, W. L. Rowan, “Accurate wavelengths for resonance lines of the Cu i and Zn i isoelectronic sequences for Pd to Dy,” J. Opt. Soc. Am. B 8, 1799 (1991).
    [CrossRef]
  2. K. T. Cheng, Y.-K. Kim, “Energy levels, wavelengths, and transition probabilities of Cu-like ions,” At. Data Nucl. Data Tables 22, 547 (1978). Ab initio values of the quantum defects of the ng configurations were communicated privately by K. T. Cheng, Y.-K. Kim, Argonne National Laboratory, Argonne, Ill. 60439 (1981).
    [CrossRef]
  3. L. J. Curtis, “An explicit empirical formula for fine-structure separations of the 2P∘ and 2D terms for ions in the Cu isoelectronic sequence,” J. Phys. B 14, 631 (1981).
    [CrossRef]
  4. L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
    [CrossRef]
  5. E. Biémont, “Energy levels, wavelengths, and weighted oscillator strengths for n= 3–4 and 4–4 transitions in Cu-like ions (Sr x to Nd xxxii),” At. Data Nucl. Data Tables 39, 157 (1988).
    [CrossRef]
  6. J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
    [CrossRef]
  7. W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
    [CrossRef] [PubMed]
  8. Y.-K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, “Resonance transition energies of Li-, Na- and Cu-like ions,” Phys. Rev. A, 44, 148 (1991).
    [CrossRef] [PubMed]
  9. J. Reader, N. Acquista, D. Cooper, “Spectra and energy levels of ions in the copper isoelectronic sequence from Ru15+ to Sn21+,” J. Opt. Soc. Am. 73, 1765 (1983).
    [CrossRef]
  10. Optimization of the level values was done with the computer code elcalc, written by L. J. Radziemski, Washington State University, Pullman, Wash.The procedure and definition of the level value uncertainties are described by L. J. Radziemski, V. Kaufman, “Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl i),” J. Opt. Soc. Am. 59, 424 (1969).
    [CrossRef]

1991 (2)

1990 (1)

W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
[CrossRef] [PubMed]

1989 (1)

J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
[CrossRef]

1988 (1)

E. Biémont, “Energy levels, wavelengths, and weighted oscillator strengths for n= 3–4 and 4–4 transitions in Cu-like ions (Sr x to Nd xxxii),” At. Data Nucl. Data Tables 39, 157 (1988).
[CrossRef]

1986 (1)

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

1983 (1)

1981 (1)

L. J. Curtis, “An explicit empirical formula for fine-structure separations of the 2P∘ and 2D terms for ions in the Cu isoelectronic sequence,” J. Phys. B 14, 631 (1981).
[CrossRef]

1978 (1)

K. T. Cheng, Y.-K. Kim, “Energy levels, wavelengths, and transition probabilities of Cu-like ions,” At. Data Nucl. Data Tables 22, 547 (1978). Ab initio values of the quantum defects of the ng configurations were communicated privately by K. T. Cheng, Y.-K. Kim, Argonne National Laboratory, Argonne, Ill. 60439 (1981).
[CrossRef]

Acquista, N.

Baik, D. H.

Biémont, E.

E. Biémont, “Energy levels, wavelengths, and weighted oscillator strengths for n= 3–4 and 4–4 transitions in Cu-like ions (Sr x to Nd xxxii),” At. Data Nucl. Data Tables 39, 157 (1988).
[CrossRef]

Blundell, S. A.

W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
[CrossRef] [PubMed]

Brown, C. M.

J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
[CrossRef]

Cheng, K. T.

K. T. Cheng, Y.-K. Kim, “Energy levels, wavelengths, and transition probabilities of Cu-like ions,” At. Data Nucl. Data Tables 22, 547 (1978). Ab initio values of the quantum defects of the ng configurations were communicated privately by K. T. Cheng, Y.-K. Kim, Argonne National Laboratory, Argonne, Ill. 60439 (1981).
[CrossRef]

Churilov, S. S.

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

Cooper, D.

Curtis, L. J.

L. J. Curtis, “An explicit empirical formula for fine-structure separations of the 2P∘ and 2D terms for ions in the Cu isoelectronic sequence,” J. Phys. B 14, 631 (1981).
[CrossRef]

Desclaux, J. P.

Y.-K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, “Resonance transition energies of Li-, Na- and Cu-like ions,” Phys. Rev. A, 44, 148 (1991).
[CrossRef] [PubMed]

Feldman, U.

J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
[CrossRef]

Indelicato, P.

Y.-K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, “Resonance transition energies of Li-, Na- and Cu-like ions,” Phys. Rev. A, 44, 148 (1991).
[CrossRef] [PubMed]

Ivanov, L. N.

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

Ivanova, E. P.

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

Johnson, W. R.

W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
[CrossRef] [PubMed]

Kaufman, V.

Kim, Y.-K.

J. Sugar, V. Kaufman, D. H. Baik, Y.-K. Kim, W. L. Rowan, “Accurate wavelengths for resonance lines of the Cu i and Zn i isoelectronic sequences for Pd to Dy,” J. Opt. Soc. Am. B 8, 1799 (1991).
[CrossRef]

Y.-K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, “Resonance transition energies of Li-, Na- and Cu-like ions,” Phys. Rev. A, 44, 148 (1991).
[CrossRef] [PubMed]

K. T. Cheng, Y.-K. Kim, “Energy levels, wavelengths, and transition probabilities of Cu-like ions,” At. Data Nucl. Data Tables 22, 547 (1978). Ab initio values of the quantum defects of the ng configurations were communicated privately by K. T. Cheng, Y.-K. Kim, Argonne National Laboratory, Argonne, Ill. 60439 (1981).
[CrossRef]

Kononov, E. Ya.

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

Radziemski, L. J.

Optimization of the level values was done with the computer code elcalc, written by L. J. Radziemski, Washington State University, Pullman, Wash.The procedure and definition of the level value uncertainties are described by L. J. Radziemski, V. Kaufman, “Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl i),” J. Opt. Soc. Am. 59, 424 (1969).
[CrossRef]

Reader, J.

Rowan, W. L.

Sapirstein, J.

W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
[CrossRef] [PubMed]

Seely, J. F.

J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
[CrossRef]

Sugar, J.

Tsirekidze, M. A.

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

At. Data Nucl. Data Tables (3)

E. Biémont, “Energy levels, wavelengths, and weighted oscillator strengths for n= 3–4 and 4–4 transitions in Cu-like ions (Sr x to Nd xxxii),” At. Data Nucl. Data Tables 39, 157 (1988).
[CrossRef]

J. F. Seely, C. M. Brown, U. Feldman, “Wavelengths and energy levels for the Cu i isoelectronic sequence Ru15+ through U63+,” At. Data Nucl. Data Tables 43, 145 (1989).
[CrossRef]

K. T. Cheng, Y.-K. Kim, “Energy levels, wavelengths, and transition probabilities of Cu-like ions,” At. Data Nucl. Data Tables 22, 547 (1978). Ab initio values of the quantum defects of the ng configurations were communicated privately by K. T. Cheng, Y.-K. Kim, Argonne National Laboratory, Argonne, Ill. 60439 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

L. J. Curtis, “An explicit empirical formula for fine-structure separations of the 2P∘ and 2D terms for ions in the Cu isoelectronic sequence,” J. Phys. B 14, 631 (1981).
[CrossRef]

Phys. Rev. A (2)

W. R. Johnson, S. A. Blundell, J. Sapirstein, “Many-body perturbation-theory calculations of energy levels along the copper isoelectronic sequence,” Phys. Rev. A 42, 1087 (1990).
[CrossRef] [PubMed]

Y.-K. Kim, D. H. Baik, P. Indelicato, J. P. Desclaux, “Resonance transition energies of Li-, Na- and Cu-like ions,” Phys. Rev. A, 44, 148 (1991).
[CrossRef] [PubMed]

Phys. Scr. (1)

L. N. Ivanov, E. P. Ivanova, E. Ya. Kononov, S. S. Churilov, M. A. Tsirekidze, “Energy levels of the 4lj and 5lj states for Cu-like ions; experiment and calculation,” Phys. Scr. 33, 401 (1986).
[CrossRef]

Other (1)

Optimization of the level values was done with the computer code elcalc, written by L. J. Radziemski, Washington State University, Pullman, Wash.The procedure and definition of the level value uncertainties are described by L. J. Radziemski, V. Kaufman, “Wavelengths, energy levels, and analysis of neutral atomic chlorine (Cl i),” J. Opt. Soc. Am. 59, 424 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (6)

Tables Icon

Table 1 Observed Wavelengths and Intensitiesa of Sb22+ and Te23+

Tables Icon

Table 2 Wavelengths (Å) for the 4s–4p Transitions of Sb22+ and Te23+

Tables Icon

Table 3 Energy Levels of Sb22+

Tables Icon

Table 4 Energy Levels of Te23+

Tables Icon

Table 5 Wavelengths (Å) Calculated from Optimized Level Values of 4s–5p and 4p–5d Transitions of Sb22+ and Te23+

Tables Icon

Table 6 Ionization Energies of Sb22+ and Te23+

Metrics