Abstract

Whenever a bright soliton is superimposed onto a much longer pulse or a continuous wave at the input of an optical fiber, its nonlinear propagation in the anomalous dispersion regime of the fiber critically depends on the relative phase at input of the two pulses. Whenever the relative phase between the pulses is in the range [−π/2, π/2], a stable solitonlike waveform is formed. Otherwise the soliton pulse rapidly decays into dispersive waves. We describe the potential of this effect for coherent-phase detection of solitons, optical-pulse compression, and all-optical switching. We also discuss the influence on the propagation of solitons plus a background of perturbations such as modulational instability and the Raman self-scattering effect.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription